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Abstract

Fundamental issues in Beam-Position-Monitor (BPM)-based beam dynamics obser-

vations are studied in this dissertation. The major topic is the Model-Independent

Analysis (MIA) of beam centroid dynamics. Conventional beam dynamics analysis

requires a certain machine model, which itself often needs to be refined by beam mea-

surements. Instead of using any particular machine model, MIA relies on a statistical

analysis of the vast amount of BPM data that often can be collected non-invasively

during normal machine operation. There are two major parts in MIA. One is noise

reduction and degrees-of-freedom analysis using a singular value decomposition of a

BPM-data matrix, which constitutes a principal component analysis of BPM data.

The other is a physical base decomposition of the BPM-data matrix based on the

time structure of pulse-by-pulse beam and/or machine parameters. The combination

of these two methods allows one to break the resolution limit set by individual BPMs

and observe beam dynamics at more accurate levels. A physical base decomposition

is particularly useful for understanding various beam dynamics issues. MIA improves

observation and analysis of beam dynamics and thus leads to better understanding

and control of beams in both linacs and rings. The statistical nature of MIA makes

it potentially useful in other fields.

Another important topic discussed in this dissertation is the measurement of a

nonlinear Poincaré section (one-turn) map in circular accelerators. The beam dy-

namics in a ring is intrinsically nonlinear. In fact, nonlinearities are a major factor

that limits stability and influences the dynamics of halos. The Poincaré section map

plays a basic role in characterizing and analyzing such a periodic nonlinear system.

Although many kinds of nonlinear beam dynamics experiments have been conducted,
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no direct measurement of a nonlinear map has been reported for a ring in normal

operation mode. This dissertation analyzes various issues concerning map measure-

ments and shows that it is possible to measure the Poincaré section map (in terms

of Taylor series) of a circular accelerator to a surprisingly high order and accuracy

based on present BPM technology. MIA can overcome the inherent limit of BPM

resolution. Nonlinear map measurements will advance understanding of the beam

dynamics of a ring.
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Chapter 1

Introduction

Observation and comprehension of beam dynamics in an operating accelerator is cru-

cial for improving machine performance. Beam Position Monitors (BPMs) are devices

to measure the beam centroid along an accelerator beam line. As primary beam mon-

itors, they provide information on beam dynamics in phase space. Usually theorists

take such information for granted, while experimentalists struggle with errors due

to BPM noise. In practice, one often encounters BPM resolution problems in sen-

sitive measurements arising from nonlinearities or wakefield effects. As accelerators

get larger and larger, beam control requirements become tighter and tighter, and

more and more sensitive measurements become essential. To keep up with this trend

and to accomplish difficult measurement/control tasks, the basic strategy is to im-

prove individual BPM resolution. However, is there anything one can do beyond the

hardware resolution limit? The easy answer is to average over time (turns in a ring

or pulses in a linac), which is routinely used in beam observations when applicable.

However, single pulse/turn resolution is often required. The next conceivable answer

is to average over BPMs in some way. Imagine there are a large number of BPMs at

the same location, averaging their readings will obviously improve the measurement

accuracy. In reality, there are usually many BPMs distributed along a beam line.

This dissertation shows how to obtain statistical benefits of using a large number of

BPMs collectively. Remarkably, it is possible to improve the effective single-pulse in-

dividual BPM resolution by analyzing as an ensemble the readings of a large number

1



CHAPTER 1. INTRODUCTION 2

of BPMs for a large number of pulses.

Although many techniques have been developed to measure various beam or ma-

chine parameters, there is still a lack of systematic theoretical studies on some ba-

sic statistical issues of beam dynamics observations, especially the statistical error

analysis in beam measurements. Furthermore, conventional beam dynamics mea-

surement techniques rely on a concrete machine model, although conflicts between

model and observation often leave machine physicists uncomfortable. Yet not much

has been done to study beam dynamics without a machine model. This disserta-

tion explores these gray areas and develops general data analysis methods to study

beam dynamics independent of machine models. For this reason, the studies are ti-

tled Model-Independent Analysis (MIA). Such an adventure turns out to be rather

fruitful and may have significant impact on beam dynamics studies in linear as well

as circular accelerators. The BPM noise reduction mentioned above is a major MIA

achievement. The main approach used in MIA is multivariate statistical data analy-

sis, which is widely used in many other fields such as economics and medical research

for statistical inference and so on. However, such statistical analysis has rarely been

used in beam physics. So, to some extent, this dissertation adapts statistical analysis

methods to beam dynamics analysis, even though it did not start that way. (In fact,

we did reinvent wheels in our exploration.)

In terms of a methodology directed towards beam dynamics measurements, in

addition to the statistical data analysis aspect, this dissertation focuses on the mea-

surement of transformation matrices/maps, which are widely used in beam dynam-

ics computations. In fact, a map approach is now a crucial aspect of beam optics

designs[35]. Yet there is still a lack of direct measurements of those map coefficients,

especially in rings. Usually each individual machine parameter is targeted by cer-

tain special measurement techniques. For example, instead of off-diagonal elements

of a transformation matrix, linear coupling is measured by scanning horizontal vs.

vertical tunes; instead of nonlinear map coefficients, chromaticity and tune-shift-

with-amplitude are measured by observing tune dependency on beam energy and

amplitude. In principle, one can measure transformation maps first and then extract

machine parameters from the maps. In this dissertation, I discuss methods to directly
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measure transformation maps, especially the nonlinear one-turn map in a ring (which

contains all the global single-particle-dynamics information such as linear coupling,

chromaticity, tune-shift-with-amplitude, and so on). I do not describe methods such

as Lie algebraic normal-form analysis for extracting machine parameters from maps

since they are well known.[70, 24, 34, 36, 35, 33]

The layout of this dissertation is as following. Chapter 2 reviews conventional

BPM-based beam dynamics measurements with an emphasis on the error analysis.

Chapter 3 describes various theoretical aspects of Model-Independent Analysis (MIA)

techniques—the main subject of this dissertation. Chapter 4 discusses MIA applica-

tions for linacs by presenting simulation and experimental results from the Stanford

Linear Collider (SLC), the first linear collider in the world. Chapter 5 detours for a

moment to introduce another important subject of this dissertation: nonlinear one-

turn map measurements in a ring. By evaluating various factors that may affect

such measurements, I establish the possibility to measure a nonlinear one-turn map

to rather high order with good accuracy. The major obstacle is BPM resolution.

Chapter 6 discusses MIA applications to rings, especially how MIA can facilitate

one-turn map measurements by alleviating the BPM resolution problem. Simulations

for the brand new PEP-II B-factory machine are presented. Chapter 7 summarizes

the major conclusions of this dissertation. Additionally, an introduction section or

paragraph is given at the beginning of each chapter to further clarify the structure of

this dissertation.

There are two major mathematical tools employed throughout this dissertation:

least-squares regression and the singular value decomposition of matrices. Each of

these well-established mathematical topics has volumes devoted to it. However, since

these mathematical subjects may be unfamiliar to potential readers of this disserta-

tion, they will be reviewed in the appendices so that this dissertation is self-contained.

Appendix A covers least-squares methods and Appendix B covers the singular value

decomposition. For general discussions on multivariate statistical analysis, please see

the references [8, 9, 38, 68, 60, 48, 67].



Chapter 2

Review of BPM-based beam

dynamics measurements and

controls

I start with the basic problem of beam dynamics observations and discuss how to

measure the phase-space motion of a beam, focusing on the issue of resolution and

error analysis. First, the well-known linear dynamics model will be used in the dis-

cussion because linear motion is the dominant motion. Moreover, one should always

choose the simplest section of a given lattice for phase-space measurements. Sec-

ond, I generalize the discussion into general orbit-fitting problems. Third, I review

the Response Matrix Method, which has been quite successful in accelerator model

calibration. Linear transformation matrix measurements are reviewed, in which the

principal components analysis has been used. In addition to these beam dynamics

measurement and machine diagnostic methods, a few beam control and orbit cor-

rection methods are briefly reviewed, although this dissertation is focused on the

dynamics measurements. This chapter is not critical for the understanding of the

other chapters.

4



CHAPTER 2. REVIEW OF BPM-BASED DYNAMICS MEASUREMENTS 5

2.1 Measurement of beam dynamics in 11
2D phase

space

Usually transverse beam dynamics is dominated by linear motions and the two trans-

verse degrees of freedom are only weakly coupled. Thus, I start with the ideal 11
2
D

(one transverse degree {x, px} plus energy variation δ, where px is the same as x′ at

linear order) linear beam dynamics, which is governed by:




x =
√

2Jβ cos(φ+ ψ) + ηδ

px = −
√

2J
β

[sin(φ+ ψ) + α cos(φ+ ψ)] + η′δ
(2.1)

where the lattice functions β, α, η, and the phase advance ψ depend on location s

but not on beam motion. (This discussion is mainly for rings, but can be adapted

to linacs as well.) The action-angle variables J and φ as well as the relative energy

deviation δ characterize a particular beam motion, independent of the location. To

measure these three beam dynamics quantities, at least three BPMs are required in

general. I will use ˜ and ¯ over a position dependent quantity to indicate that it is at

the 2nd and 3rd BPM locations respectively. Three BPM readings (x, x̃, x̄) are used

to determine the dynamical variables via




x =
√

2Jβ cosφ+ ηδ ,

x̃ =

√
2Jβ̃ cos(φ+ ψ̃) + η̃δ ,

x̄ =
√

2Jβ̄ cos(φ+ ψ̄) + η̄δ .

(2.2)

where we have assumed ψ = 0 (i.e. ψ̃ and ψ̄ are the phase advances from the first

BPM to the 2nd and 3rd BPMs). The energy deviation is given by

δ =

x̃√
β̃

sin ψ̄ − x̄√
β̄

sin ψ̃ − x√
β

sin(ψ̄ − ψ̃)

η̃√
β̃

sin ψ̄ − η̄√
β̄

sin ψ̃ − η√
β

sin(ψ̄ − ψ̃)
, (2.3)
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and the momentum is given by

px =
x̃− η̃δ −R11(x− ηδ)

R12

+ η′δ, (2.4)

where R11 =
√

β̃
β
(cos ψ̃ + α sin ψ̃) and R12 =

√
ββ̃ sin ψ̃.

Except for special cases where a denominator becomes zero, Eqs. (2.2)–(2.4)

uniquely determines the dynamical quantities {x, px, δ} from three BPM readings

(x, x̃, x̄) for a given lattice. From these equations, we can clearly see many routinely-

used rules (“tips”), which are listed here as a review although they are obvious.

• To measure energy, BPMs at non-zero dispersion locations are required. On the

other hand, to measure betatron motion in a non-zero dispersion area, beam

energy must be taken into account.

• BPMs with 180◦ (or multiple of) phase difference can NOT be used to measure

beam momentum.

• BPMs at a phase difference of 180◦ are perfect for measuring the relative beam

energy δ because the betatron motion can be cancelled and only two BPM

readings are necessary. The expression of δ can be greatly simplified in such

case. For example, if ψ̃ = π,

δ =

x̃√
β̃

+ x√
β

η̃√
β̃

+ η√
β

. (2.5)

The relative energy δ is simply proportional to the sum of the BPM readings if

the two beta functions are also the same.

There are other rules of thumb for phase space measurement when taking the BPM

resolution into account. I will point them out in the next section.
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2.2 Resolution of phase space measurement

In this section, I consider measurement errors due to limited BPM resolutions. For

simplicity, assume there is no dispersion at two BPM locations, with beta function

values β and β̃ respectively, and phase advance ψ between them.1 Then, the 1-D

linear beam dynamics is given in action-angle variables by




x =
√

2Jβ cosφ

x̃ =

√
2Jβ̃ cos(φ+ ψ)

(2.6)

The deviations in coordinate variables and action-angle variables are related by

(
dx

dx̃

)
=




√
β
2J

cosφ −√
2Jβ sinφ√

β̃
2J

cos(φ+ ψ) −
√

2Jβ̃ sin(φ+ ψ)


( dJ

dφ

)
(2.7)

and (
dJ

dφ

)
=

1

sinψ



√

2J
β

sin(φ+ ψ) −
√

2J
β̃

sinφ

1√
2Jβ

cos(φ+ ψ) − 1√
2Jβ̃

cosφ


( dx

dx̃

)
(2.8)

Consider dx and dx̃ as BPM measurement errors and assume they follow a Gaus-

sian distribution. Since the noise from the two BPMs are independent, according

to the general statistical theory we know that the errors {dJ, dφ} are also Gaussian

distributed. In the case that the two BPM noises are uncorrelated and have the same

resolution ( width of the distribution) ∆x, we can calculate the errors in action-angle

1To simplify the notation, here I use ψ instead ψ̃ for the phase advance although ψ̃ is used in the
last section.
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variables as:

∆J =

√
2J

| sinψ|
√
ββ̃

√
β̃ sin2(φ+ ψ) + β sin2 φ ∆x

=

√
J

| sinψ|
√
ββ̃

√
β + β̃ −

√
(β̃ cos 2ψ + β)2 + (β̃ sin 2ψ)2 cos(2φ+ ξ) ∆x

≤
√
J

| sinψ|

√√√√ 1

β
+

1

β̃
+

√
1

β2
+

1

β̃2
+

2

ββ̃
cos 2ψ ∆x (2.9)

and

∆φ =
1

2
√
J

1

| sinψ|
√
ββ̃

√
β + β̃ +

√
(β̃ cos 2ψ + β)2 + (β̃ sin 2ψ)2 cos(2φ+ ξ) ∆x

≤ 1

2
√
J

1

| sinψ|

√√√√ 1

β
+

1

β̃
+

√
1

β2
+

1

β̃2
+

2

ββ̃
cos 2ψ ∆x (2.10)

where ξ = arctan β̃ sin 2ψ

β̃ cos 2ψ+β
. Since the angle variable φ can have any value, we should

take the upper limits of the above two equations as resolution estimates. For the

relative error in the amplitude, we have ∆
√
J√
J

= 1
2

∆J
J

, which has the same limit as ∆φ

does. Therefore, the resolution in action-angle variables are

{
∆
√
J√
J
,∆φ

}
max

= F (β, β̃, ψ)
∆x

k
√
ε

= F̂ (
β

β̃
, ψ)

∆x

k σx
(2.11)

where ε is the beam emittance and the amplitude factor k ≡
√

2J
ε

measures the

amplitude of the betatron oscillation in units of beam size,

F (β, β̃, ψ) ≡ 1√
2| sinψ|

√√√√ 1

β
+

1

β̃
+

√
1

β2
+

1

β̃2
+

2

ββ̃
cos 2ψ, (2.12)
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and

F̂

(
β

β̃
, ψ

)
≡ 1√

2| sinψ|

√√√√
1 +

β

β̃
+

√
1 +

(
β

β̃

)2

+ 2
β

β̃
cos 2ψ. (2.13)

F and F̂ are dimensionless factors that reflect the dependency of phase-space reso-

lution on the layout of BPMs. One application of this error analysis is to determine

which pair of BPMs can yield more accurate measurement of phase space motion.

Since ∆x
k
√
ε

is location independent, the function F (β, β̃, ψ) is a figure of merit to eval-

uate how good a pair of BPMs are for phase space measurements.

To minimize F , we differentiate F (β, β̃, ψ) over ψ and get:

∂F

∂ψ
=

−1√
2

cosψ

[
1

sin2 ψ

√· · · + 2

ββ̃
√· · ·√· · ·

]
= 0 (2.14)

Since [· · · ] > 0, cosψ = 0 is the condition for optimal measurement. In other words,

for a given BPM resolution, the condition for the best phase space mea-

surement is to have 90◦ phase advance between the two BPMs, which is a

physically intuitive requirement. (Although 270◦ or larger phase advance could satisfy

Eq.(2.14), it is better to use a smaller value because a larger phase advance means

more magnets between the two BPMs, and therefore more uncertainty involved in

the measurement.) The optimal value of the figure of merit function F is given by

Fopt = F (β, β̃,
π

2
) =

1√
2

√
1

β
+

1

β̃
+ | 1

β
− 1

β̃
| =

1√
min(β, β̃)

(2.15)

This optimal value confirms another intuition: for a given BPM resolution, the larger

the beta function at the measurement location, the better the phase space resolution.

Moreover, it is the smaller beta function between the two BPM locations that counts.

From the F function, we can draw one more observation that a phase advance between

60◦ ≤ ψ ≤ 120◦ is about as good as 90◦. However, a value less than 30◦ will reduce

the phase space resolution by at least a factor of 2.

In summary, a general guideline to choose BPM locations in a ring for

phase space measurement is: try to have a phase advance 90◦ ± 30◦ and
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have min(β, β̃) as large as possible.

Although the function F̂ (β
β̃
, ψ) is not as meaningful as F (β, β̃, ψ) since the beam

size σx depends on location, in some cases, F̂ may be easier to use because it has one

less variable. Under the above optimal condition F̂opt = 1.

Similarly, we examine the phase space resolution in coordinate variables. The

position resolution is given directly by the BPM resolution. To get the momentum

resolution, we recall that

p = −R11

R12

x+
1

R12

x̃ (2.16)

where the transfer matrix elements R11 =
√

β̃
β
(cosψ + α sinψ) =

√
β̃γ cos(ψ −

arctanα) and R12 =

√
β̃β sinψ. Thus, for a given BPM resolution ∆x,

∆p =

√(
R11

R12

)2

+

(
1

R12

)2

∆x

=

√
γ

| sinψ|

√
1

β
cos2(ψ − arctanα) +

1

β̃βγ
∆x (2.17)

Therefore, the relative errors in coordinate variables are given by




∆x
xmax

= ∆x√
2Jβ

= 1√
β

∆x
k
√
ε

∆p
pmax

= ∆p√
2Jγ

= 1
| sinψ|

√
1
β

cos2(ψ − arctanα) + 1
β̃βγ

∆x
k
√
ε

Note that ∆p
pmax

is different from ∆J
Jmax

.

2.3 General orbit fitting problems

In the previous two sections I presented the explicit formulae that can be used to

measure the phase space dynamics in a simple 11
2

degrees-of-freedom system, and

analyzed measurement errors due to BPM noise. In this section I will give a general

formula that can accommodate any number of degrees of freedom and use any number

of BPMs. It covers general orbit fitting problems.
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Let ~b = {b1, b2, · · · , bM} be the readings of M consecutive BPMs on the same

beam pulse, then in general we have

~b = ~b0 + ~R11x0 + ~R12x
′
0 + ~R13y0 + ~R14y

′
0 + ~R16δ + · · · + ~n (2.18)

where ~b0 contains all the BPMs’ offsets; ~Rij’s are the coefficients of linear transfer

matrices from a certain location s0 to the BPMs’ locations s1, s2, · · · , sM ; x0, x
′
0,

y0, y
′
0, and δ are the initial beam conditions at s0; and ~n contains all BPM noise. In

addition to the linear terms one can have higher order terms as well as terms due to

other physical effects in the expansion. We can write Eq.(2.18) in matrix form

∆~bT ≡
(
~b−~b0

)T
= F ~q T + ~nT (2.19)

where superscript T indicates matrix transpose,

~q ≡ [ x0, x
′
0, y0, y

′
0, δ, · · · ] ,

and the matrix

F ≡
[
~R T

11
~R T

12
~R T

13 · · ·
]
≡




R11(s0 → s1) R12(s0 → s1) R13(s0 → s1) · · ·
R11(s0 → s2) R12(s0 → s2) R13(s0 → s2) · · ·

...
...

...
...

R11(s0 → sM) R12(s0 → sM) R13(s0 → sM) · · ·




Eq.(2.19) links a difference orbit measurement given by ∆~b to the machine model

represented by F , and is the basis for orbit fitting and phase space dynamics mea-

surement. In the usual orbit fitting exercises, the goal is to find the orbit that satisfies

a given model and best fits the measured orbit, so that one can check how much the

machine deviates from its model. In phase-space dynamics measurements, the goal is

to determine the beam parameters {x0, x
′
0, y0, y

′
0, δ, · · · } from a measured orbit. Due

to the existence of noise, one often would like to measure more beam positions than

the number of parameters and make Eq.(2.19) over-determined.



CHAPTER 2. REVIEW OF BPM-BASED DYNAMICS MEASUREMENTS 12

The least-squares solution to Eq.(2.19) is given by

[ x0, x
′
0, y0, y

′
0, δ, · · · ]

T
= ~q T = (F TF )−1F T∆~b

T
(2.20)

and the fitted orbit is F (F TF )−1F T∆~b
T
, where we have assumed that BPMs have the

same resolution σn and their noise are independent (i.e.
〈
~nT~n

〉
= σ2

n I), otherwise a

more complex formula is necessary for a least-squares solution[40] (see Appendix A.4

also). Note that Eq.(2.20) covers the full rank case as well. The variance-covariance

matrix of errors in ~q can be computed as

〈[
~nF (F TF )−1

]T
~nF (F TF )−1

〉
noise

= (F TF )−1F T
〈
~nT~n

〉
F (F TF )−1

= σ2
n(F

TF )−1. (2.21)

Square roots of the diagonal terms give rms errors of the measurement due to noise,

which can be easily calculated from the given F . Two general conclusions can be

drawn from Eq.(2.21) without knowing the details of F : 1) F TF should be well con-

ditioned in order to obtain accurate measurements; 2) Since F TF generally increases

with M (i.e. F TF/M tends to be a constant, at least for a periodic lattice as in a

beam line), the measurement error goes down as 1√
M

. Therefore one can reduce the

BPM random noise effects on the measurement by using more and more BPMs. How-

ever, in addition to the random noise, the accuracy of the machine model specified in

F is crucial for an accurate measurement.

Now let us consider a familiar example. For an ideal 1-D linear lattice, the beam

position at the m-th BPM xm is given by the R-matrices as xm = R11(m)x0 +

R12(m)x′0. Suppose we measure a pulse at M BPMs and know the transformation

matrix R’s from some model, and wish to fit the orbit to the model and find the
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initial x0, x
′
0 of the orbit. In this case, Eq.(2.19) becomes

[x1, x2, · · · , xM ] = [x0, x
′
0]



R11(1) R12(1)

R11(2) R12(2)
...

...

R11(M) R12(M)




T

(2.22)

and the transpose of Eq.(2.20) yields

[
x0

x′0

]
=

[
~R11 · ~R11

~R11 · ~R12

~R12 · ~R11
~R12 · ~R12

]−1 [
~R11 · ~x
~R12 · ~x

]
(2.23)

where ~x ≡ [x1, x2, · · · , xM ]T consists of the orbit, ~R11 consists of the R11’s, and so

on. The 2× 2 matrix inversion can be done analytically and leads to the expressions

seen in the literature[12]. It is obvious how to include more degrees of freedom via

Eq.(2.20) or by extending Eq.(2.23) directly.

Section 2.2 showed how to optimize the errors given by Eq.(2.21) for the 1-D two

BPM situation. In general, such optimization could be rather involved. However,

for a given setup, Eqs. (2.20) and (2.21) provide the least-squares solution and error

estimates of the general orbit fitting problems.

2.4 Accelerator model calibration via Response

Matrix Method

The Response Matrix Method is a systematic method to calibrate accelerator models

and has been successfully used on many machines[63, 28, 29, 61]. The basic idea is

to minimize the difference, between measured and calculated (from a model), BPM

responses to changes in steering magnet strengths by adjusting various model param-

eters such as corrector strengths, quadrupole gradients, and BPM gains. This idea

can be formulated as follows. For any given magnetic steering θx and θy, responses

at BPMs can be measured as well as calculated according to one’s model to generate
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the response matrices Rmeas and Rmod so that

(
x

y

)
= Rmeas or mod

(
θx

θy

)
(2.24)

where x and y are the beam orbit response. Such a response matrix can be extended

to cover all M BPMs and N steering magnets, so that there are M × N elements.

The figure to be minimized can be specified by

χ2 =
∑
i,j

(
Rmeas
ij −Rmod

ij (ξ1, ξ2, · · · )
)2

σ2
i

(2.25)

where i goes through all BPMs of resolution σi and j goes through all steering mag-

nets. The ξ’s are model parameters to be adjusted for the minimization.

In addition, BPM gains and corrector scaling factors can be introduced to correct

the measured response matrix, i.e. use BRmeasC to replace the Rmeas in the above

expression, where the diagonal matrix B contains BPM gains and C contains corrector

scaling factors. Further correction factors can be added when necessary. For example,

the following BPM correction scheme is used in LOCO [63] for each BPM,

(
x̄

ȳ

)
=

1√
1 − c2

(
cos θ sin θ

− sin θ cos θ

)(
1 c

c 1

)(
gx x

gy y

)
(2.26)

where g is the gain, θ is the roll angle, c is a factor due to BPM pick-up electrodes

layout. All such factors can be varied for the minimization.

The implementation details of the response matrix method could be quite differ-

ent depending on how sophisticated one’s model is. Typically there are thousands of

response matrix elements and hundreds of model parameters used for the optimiza-

tion. In general, the beam responses could be nonlinear and minimization over such

a large parameter space could become difficult and time consuming if not senseless.
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One way to solve the minimization problem is to linearize the response as

Rmod
ij = R0

ij +
∑
{ξ}

∂Rij

∂ξ
δξ (2.27)

and obtain the solution using the least-squares fitting,

~δξ = (ATA)−1AT
[
Rmeas
ij −R0

ij

]
M×N,1 (2.28)

where matrix A =
[
∂Rij

∂ξ

]
consists of the M × N derivatives over each parameter in

a column, and the number of columns depends on the number of parameters in use.

Usually, A is quite a large matrix. Here I do not include the factors such as different

BPM resolutions and gains. Please see the references for such implementation details

and Appendix A for more general least-squares fitting methods. Often such proce-

dures need to be iterated due to the presence of nonlinear responses. The response

matrix method has been proven successful to calibrate the linear models of many light

source storage rings.

Usually, matrix A is degenerate and the above formal solution can not be used. A

standard treatment is to compute the pseudo-inverse of A with the help of singular

value decomposition. By removing the small singular values, the solution’s sensitivity

to noise is reduced, thus more reliable estimates of parameter adjustment δξ can be

obtained. This is one of the major application of SVD in beam measurement and

control. See Appendix A.3 for such treatments and general fitting error estimates.

Note that the design matrix A is generated from one’s model, therefore a good

model is crucial. If a sufficiently good model is available, response matrix methods

provide a systematic and powerful tool to calibrate model parameters. However,

response matrix methods do not work well, in case unanticipated physics affects the

beam response and is not included in the model. Even worse, it will not give clues

for the unknown physics. This dissertation provides novel methods to cover this gap.
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2.5 R matrix measurements

Linear beam dynamics can be characterized by the R matrix that transfers beam

phase-space variables from one location to another. In rings, lattice measurements are

focused on phase advances and beta functions because phase advances are relatively

easy to measure and the beta functions reflect the beam envelope. However R matrix

measurements can provide equivalent information and could be simple also. In linacs

the “lattice functions” are not uniquely defined by the lattice itself as they are in

rings. Thus lattice measurements rely more on the R matrix measurement. Here I

review two major techniques for R matrix measurements used for the SLC.

The first technique[17, 18] is similar to the Response Matrix method. The scheme

and symbols are illustrated in Fig. 2.1. Cq and Bp are the linear transfer matrices

to the q-th corrector and p-th BPM respectively. They are assumed known, from an

accurate model for example. R is the matrix to be determined. Mpq
ij is the measured

p-th BPM response (gradient) to the q-th corrector change, where the subscripts

i = 1 or 3 for x or y BPM reading and j = 2 or 4 for x or y corrector. It is easy to

see that

Mpq
ij =

(
BpR (Cq)−1)

ij
, (2.29)

R
C

q
B

p

M
pq
i j

X & Y correctors BPMs

q-th corrector p-th BPM

Figure 2.1: R matrix reconstruction method used by T. Barklow for SLC
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from which the fitting problem can be set up to minimize

χ2 =
∑
{pqij}

(
Mpq

ij − (BpR (Cq)−1)
ij

δMpq
ij

)2

(2.30)

where δMpq
ij are the raw measurement errors. {p, q, i, j} are chosen to generate suffi-

cient number of equations and even make the fitting overdetermined (see the reference

for details). In addition, a symplectic constraint may be imposed on R, which reduces

the fitting parameter space but makes the fitting problem nonlinear.

In addition to the accuracy of the C and B matrices, this technique relies on the

measurement accuracy of the response matrix Mpq
ij . To achieve a good measurement,

for each corrector, its strength θq is stepped over a number of increments, then fit

them with the corresponding BPM responses according toXp = Mpq
ij θq+η

p∆E
E

+const.

where the response M , dispersion η, and the constant are the parameters to be fit. A

χ2 test is performed to make sure that this response model is good. Furthermore, a

global error term σsys was introduced quadratically in the denominator of Eq.(2.30)

to account for the random noise and unknown systematics.

The second technique[54] is not as well documented but has a few good points. In

some respects, this work came close to some techniques developed in this dissertation.

The basic idea is to use measured beam trajectory parameters to reconstruct the

lattice parameters by correlating each BPM reading with a full set of trajectory

parameters. It correctly pointed out the significant effect of errors in the trajectory

parameter measurements, which could be a pitfall for a naive least-squares fitting

solution, especially when the signal-to-noise ratio is poor. The issue can be illustrated

easily by a simple example used in the reference: find the parameter p of y = p x+ q

from a given set of measured points {xi, yi|i = 1, · · · , P}. The usual least-squares

solution p̂ =
∑

i xiyi/
∑

i x
2
i is inaccurate when there are errors in x’s. Let Rs be the

signal-to-noise ratio in x, then

p̂

p
=

1

1 + 1
R2

s

, (P → ∞) (2.31)



CHAPTER 2. REVIEW OF BPM-BASED DYNAMICS MEASUREMENTS 18

Therefore the least-squares solution p̂ could yield significant errors even for modest

signal-to-noise ratio.

To avoid such a pitfall, least-squares fitting was abandoned (although this may

not be necessary, see Section 3.7) and a technique based on a principal components

method was developed. The idea can be illustrated as follows. Consider the readings

of a BPM at location s that can be expressed as

x(s) = R11(s0 → s)x(s0) +R12(s0 → s)x′(s0) +R16(s0 → s)δE. (2.32)

From a measured data set consisting of {x(s), x(s0), x
′(s0), δE} for a large number of

pulses, the lattice parameters R11(s0 → s), R12(s0 → s), and R16(s0 → s) can be

determined. However, due to the measurement noise, the usual least-squares fitting

may be inappropriate. Suppose the beam parameters are measured by three other

BPMs, say x(1), x(2), and x(3), then the above equation can be written as

a x(s) + b x(1) + c x(2) + d x(3) = 0 (2.33)

where a, b, c, and d are determined by the lattice parameters, and the beam trajec-

tories are measured by the BPM reading x’s. Due to BPM noise, the measured data

points will scatter around the 3-D hyperplane (given by the above equation) in a 4-D

space (defined by {x(s), x(1), x(2), x(3)}). The desired parameters {a, b, c, d} form

a vector perpendicular to this hyperplane. To find this vector direction, a principal

axes technique is used to determine the axis along which the data points fluctuate

the least.

The solution of this “least fluctuation direction” is given by the eigenvector corre-

sponding to the least eigenvalue of covariance matrix Cij = cov(x(i), x(j)). (Section

3.3 will describe the principal components method in details.) This method avoids

the mentioned least-squares fitting problem and thus yields much improved lattice pa-

rameter estimates. However, there is a severe limitation due to the use of the smallest

eigenvalue/eigenvector. Suppose more BPMs are used for measuring the trajectory

parameters in order to improve accuracy, then the system becomes overdetermined

and yields many near-degenerate small eigenvalues, but none of them are suitable for

determining the lattice parameters.
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2.6 Orbit corrections via SVD and MICADO

methods

Although this dissertation is focused on the beam dynamics measurement, I will

review a couple of major orbit correction methods, especially the so called “corrector

ironing” technique[77, 20, 32, 37] based on singular value decomposition (SVD). The

purpose of reviewing this topic is to clarify the ways that SVD has been used in

accelerator physics, so that one will not confuse the existing techniques with the

methods developed in this dissertation.

The main idea of SVD-based “corrector ironing” technique can be summarized as

follows.[56] Let ∆b = {∆b1, · · · ,∆bM}T be the desired orbit correction at M BPMs,

θ = {θ1, · · · , θN}T be the strengths of a set of N correctors, and RM×N be the

BPM response matrix to the corrector adjustments. The required corrector strength

changes should satisfy

∆b = R∆θ. (2.34)

This problem may have only approximate solutions that can be solved in many ways

including the least-squares methods via minimization of ‖∆b−R∆θ‖2. The problem

is that some of the required corrector changes are often very large and fight each

other, especially when the correction is made via trial-and-error approach.

There is a simple cure for this problem: solving the above least-squares via SVD

of the matrix R—a common practice for mature least-squares users. Appendix A.3

contains a brief review of this subject. There are two key ingredients in this technique:

1) the solution ∆θ̂ not only minimizes ‖∆b−R∆θ‖2 but also has a minimal 2-norm of

∆θ (i.e. minimal rms of corrector strength changes); 2) the near-degenerate degrees of

freedom can be removed and thus corrector-fighting can be avoid (without sacrificing

the correction accuracy if those correctors are redundant). For these reasons, the

SVD-based orbit correction technique has been routinely used.

Another well-known orbit correction technique is referred to as the MICADO2

method[13], which has been implemented in programs such as MAD[47, 1] and SAD[42,

2]. The basic idea is as follows: given the orbit offset to be corrected, choose the most

2The acronym is due to the name of the subroutine that performs the computation. It stands for
“MInimisation des CArrés des Distortions d’Orbits”
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effective (a given number n or using as many as necessary until the residual is suf-

ficiently small) correctors amongst all available correctors. Note that this is not the

same as using the first n singular values of the above SVD-based method. Even if

only one singular value is kept, the correction may still involve all correctors. The

MICADO method is accomplished via Householder QR factorization with column

pivoting as described in Appendix B.3 and B.4. However, the pivoting criterion used

in MACADO is different from the one described in the appendix and thus is explained

here.

The goal is to minimize ‖∆b− R∆θ‖2 by choosing appropriate corrector adjust-

ment ∆θ’s. Since orthogonal transformations do not change the 2-norm, permutation

transformation and Householder transformation are used to solve the problem. The

permutation is to reorder the correctors according to their effectiveness, while the

Householder transformation is to transform the response matrix into an upper tri-

angular form so that the solution can be easily computed by backward substitution.

The pivoting criterion results from the minimization requirement.

Consider a 6 by 5 response matrix R (see Fig. B.1 on page 152). Suppose only

the first corrector is chosen to correct the orbit, we can apply the Householder trans-

formation H1 (given by the first-column r1 of R) to zero the elements at locations

indicated by the 1’s in the figure and get

‖∆b−R∆θ‖2
2 = ‖H1∆b− e1 ∗ ‖2

2 = ‖H1∆b‖2
2 − (eT1H1∆b)

2, (2.35)

where ∗ = ±‖r1‖∆θ1. The first step relies on H1r1 = ±‖r1‖e1 and the second step is

due to the fact that the 1-st component of H1∆b can be removed by choosing θ1 while

the rest are not affected by the corrector’s setting. Thus the column that maximizes

(
eT1H1∆b

)2
=

1

‖r1‖2

[(
HT

1 H1r1
)T

∆b
]2

=

(
rT1 ∆b

)2
‖r1‖2

(2.36)

will yield the minimum residual orbit errors and should be permuted to the leading

position. Therefore, the column pivoting criterion3 is to select the column that yields

3The usual pivot as described in Appendix B.4 is to choose the column with maximum 2-norm.
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the maximum value of Eq. (2.36). If more correctors are used, the procedure can be

repeated as in a Householder QR factorization illustrated in Fig. B.1.

Note that, in the MICADO method, the effectiveness of a corrector is measured

by its ability to reduce orbit errors assuming that there is no limit to its strength.

This could be a pitfall. For example, one corrector may yield a little bit smaller pivot

value |rT∆b|/‖r‖ but much larger ‖r‖, which means that it can generate about the

same level of orbit correction with much weaker strength. Thus it may be a better

choice than the corrector determined by the MICADO method. Also, it is worth

mention that the MICADO algorithm may not give the exact least-squares solution

when more than one corrector is used.



Chapter 3

Model-Independent Analysis of

beam-centroid dynamics

3.1 Introduction

In the last chapter, I reviewed some basic issues and major techniques in BPM based

beam dynamics observation and control. There are two fundamental issues in BPM-

based model-fitting schemes. One is the accuracy limit set by individual BPM resolu-

tion, determined by available technology and budget. The other is the accuracy of the

model. This dissertation tackles these issues with a novel approach, which is titled

Model-Independent Analysis (MIA) because no particular machine model is required

in the analysis. This chapter will present the theoretical features and techniques of

MIA.[73, 45]

In order to get more accurate beam orbits, it is a standard practice to do pulse-

by-pulse averaging. Such time averages are successful in storage rings since there are

stable closed orbits and the pulse repetition rate is high. However, in linacs and rings

interesting beam dynamics observations often require pulse-by-pulse measurement

of beam orbits. Imagine there are M BPMs at the same location, averaging their

readings will obviously improve the measurement accuracy by a factor of 1√
M

. If all

the M BPMs are distributed in a drift section, their BPM readings for each pulse

can be fit to a straight line and obtain a similar statistical improvement. In reality,

22
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there are usually many BPMs distributed along a beam line with magnets and devices

between BPMs. Even so, if the transformation maps among the BPMs are known

exactly, orbit fitting method described in Section 2.3 can be used to achieve more

accurate results. However, the transformation maps are usually to be determined by

BPM measurements. A contribution of this dissertation is to show that one can still

improve the resolution limit by taking into account the correlations among a large

number of BPM readings. To detect such correlations, BPM readings for a large

number of pulses are required. The improvement in observation accuracy may then

allow studies of subtle beam dynamics issues and provide better control of the beam.

Since model-fitting approaches rely on the correctness of one’s model, they are

more suitable when the beam dynamics is well understood, the machine is stable, and

a good machine model exists. Often this is not the case. In this chapter, I develop

techniques for analyzing the beam dynamics without reference to a particular machine

model. Basically matrix and statistical analysis methods are used to systematically

analyze the BPM readings for a large number of pulses and a large number of BPMs.

This chapter is organized as follows: Section 3.2 analyzes the BPM readings from

a perturbative point of view and discusses the physical base decomposition of a BPM

data matrix; Section 3.3 introduce the principal components analysis[38], a major

statistical method that will be employed in MIA; Section 3.4 discusses the outcomes

of a principal components analysis of BPM data via Singular Value Decomposition

(SVD)[39]; Section 3.5 discusses how to improve the BPM resolution limit by using

a large number of BPMs; Section 3.6 presents the degrees-of-freedom analysis of a

beam line; Section 3.7 discusses how to achieve a physical base decomposition using

the time structure of pulse signals; Section 3.8 discusses methods to explore and

identify the unknown degrees of freedom revealed in the degrees-of-freedom analysis;

Section 3.9 discusses the characteristics of the noise floor of a singular-value spectrum;

Section 3.10 provides theoretical explanation of the noise floor behavior; Section 3.11

describes a kick analysis that is helpful to interpret the physical basis; Section 3.12

discusses computation and applications of the Wronskian determinant of the measured

dynamical system; and finally, Section 3.13 presents analytical results of an SVD

analysis of a simple system in order to better understand such analyses.
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3.2 Physical base decomposition of a BPM-data

matrix

The central object of a MIA is a BPM-data matrix B, which simply is the data

matrix formed by the readings of P pulses on M BPMs (a matrix of P rows and M

columns). Physically B contains the transverse beam centroid positions of P pulses

sampled by M monitors along a beam line. Clearly, B contains all the information

available from BPMs. Let us first examine the physical composition of the matrix B

from a perturbative point of view. This is natural since for a short period of time all

the pulses are close to an average orbit.

The transverse beam position of a pulse depends on various physical variables

such as the initial incoming conditions of the beam, the settings of magnets, and rf

conditions. One can Taylor expand the beam position b over all variables as

b = b(x̄1, x̄
′
1, δ̄, σ̄z, · · · ) +

∑
v∈{x1,x′1,··· }

∂b

∂v

∣∣∣∣
v=v̄

∆v (3.1)

+
1

2

∑
v1,v2∈{x1,x′1,··· }

∂2b

∂v2∂v1

∣∣∣∣
v1=v̄1

v2=v̄2

∆v1∆v2 + · · ·

where x1, x
′
1, δ, σz are respectively the initial beam position, angle, relative energy,

and bunch length, given as examples of possible physical variables; the over-bar in-

dicates the expansion points; and ∆v = v − v̄. The zero order term may have a

complicated dependency on the variables and is sensitive to unknown BPM offset

errors. To eliminate this term, one may subtract the average1 over a large ensemble

1In case nonlinear terms are significant, one should be aware that the ensemble average may not
be the real central orbit because the nonlinear terms do not average to zeroes. In such cases, one
should try to use small amplitude samples.
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of pulses and study the difference

b− 〈b〉 =
∑
v

∂b

∂v

∣∣∣∣
v=v̄

(∆v − 〈∆v〉) (3.2)

+
1

2

∑
v1,v2

∂2b

∂v2∂v1

∣∣∣∣
v1=v̄1

v2=v̄2

(∆v1∆v2 − 〈∆v1∆v2〉) + · · ·

where 〈 〉 indicates the average over the ensemble of pulses. Although some sec-

ond derivatives (which characterize, e.g. the chromatic dependency of the betatron

motion) have been found significant at times, the third and higher order terms are

generally negligible in linacs and will be dropped (one can easily include more terms

when in doubt).

Concentrating for a moment on just the initial conditions and their products, a

standard map formalism yields

~z(s) =
∑
~n

~R~n(s0 → s) · z ~n0 .

Each ~R~n(s0 → s) is a possible physical vector. Since in a ring the z0 changes in each

turn, with sufficient resolution and orbit amplitudes, one might hope to observe the

~R~n(s0 → s). I will explore map measurements in later chapters.

Back on track, I treat the first and higher order terms on the same footing and

rewrite Eq.(3.2) in a concise form

b− 〈b〉 =
∑
{q}

q fq (3.3)

where the variable q = ∆v−〈∆v〉
std(∆v)

or ∆v1∆v2−〈∆v1∆v2〉
std(∆v1∆v2)

and fq is the corresponding deriva-

tive ∂b
∂v

∣∣
v̄
·std(∆v) or 1

2
∂2b

∂v2∂v1

∣∣∣
v̄1,v̄2

· std(∆v1∆v2). The physical variables are normalized

by their standard deviations over the ensemble of pulses, so that all the q’s are di-

mensionless and reflect the relative changes (otherwise one has to deal with different

quantities such as 10−5 rad, 106 volts, etc.), while all the f ’s have the same dimension

as the BPM readings.
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Eq.(3.3) tells us that a beam orbit is a linear combination of a limited number of

“basic” orbits given by the fq’s. In other words, the BPM reading pattern generated

by each pulse is a superposition of certain basic patterns. This fact allows us to apply

linear algebra concepts and matrix analysis techniques. According to Eq.(3.3), the

BPM-data matrix B (from now on it consists of b − 〈b〉 instead of b) which is the

ensemble of P pulses monitored with M BPMs can be written as

B = QF T +N (3.4)

where matrices QP×d = [~q1, · · · , ~qd], FM×d = [~f1, · · · , ~fd], and NP×M contains the

noise associated with each BPM reading. The column vector ~qi contains the P values

of the i-th physical variable and ~fi contains the M components of the corresponding

physical pattern. The q’s are referred to as temporal patterns or time structures of

pulses, and the f ’s as spatial patterns or physical vectors. I assume without loss

of generality that all the physical vectors are linearly independent, i.e. F has full

column rank given by d. Neglecting BPM errors, they form a complete basis for the

row space of the BPM-data matrix (i.e. range of BT ). Unlike P and M , which can be

chosen at will, dimension d is determined by the dynamics. An MIA achievement (see

Section 3.6) is the determination of d. Generally d is a small number and I choose

P and M so that d � M � P to obtain statistical benefits. Typical numbers are

d ∼ 10, M ∼ 102, and P ∼ 103.

One concern on the nonlinear terms in the above decomposition is that whether

the temporal patterns inQ are independent. Although the nonlinear terms are derived

from the linear terms, all the patterns are indeed linearly independent of each other.

Take the x and x2 terms as an example, one can not find a coefficient α such that

x+αx2 = 0 for all potential x. Nonetheless, the Q matrix tends to be ill-conditioned

when high order nonlinear terms involved because of near degeneracy.

The matrix F contains stationary beam-line properties such as the dispersion

function. MatricesQ andN contain (often stochastic) quantities that change from one

ensemble to another. However, 1
P
QTQ = CQ, which is the sample correlation matrix

of the q variables, contains statistical properties of the ensemble of pulses. Thus,
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if everything is stable, CQ contains only stationary machine properties. Similarly,
1
P
NTN characterizes BPM resolutions as well as possible correlations in BPM noise.

For convenience, I normalize B, Q, and N by
√
P , so that the important variance-

covariance matrix of BPM readings and the correlation matrix of temporal signals

(q’s) can be formed simply as

CB = BTB and CQ = QTQ. (3.5)

Note that the statistical meaning of Eq.(3.5) requires that the column means (aver-

ages) of B and Q have been taken out. Obviously

CB = F CQF
T (3.6)

if one neglects noise. This shows the mathematical relationship between CB and CQ.

Eq.(3.4) is called a physical base decomposition of the BPM-data matrix. Al-

though straightforward, it is an important statement both conceptually and mathe-

matically. In fact, it sets up the statistical model of the problem. Such a model has

been widely studied by statisticians and mathematicians. It also contains the goal

of MIA: to find F from measured B and Q. Physically speaking, the major goals of

beam dynamics analysis are,

• identify a complete set of variables contributing to the beam motion and the

physics behind them; and

• determine all the physical-basis patterns and the physics behind them.

To achieve these objectives, it is essential to isolate signals from noise. In the following

sections, I will discuss how to handle N , find d, and obtain F .

Physical base decomposition is not unique in the sense that one can choose physical

variables differently. Therefore the BPM-data matrix itself does not contain sufficient

information to determine a physical base decomposition. Extra information about the

physical variables is necessary. Although it is possible to impose certain mathemat-

ical requirements (such as orthogonality) to make the decomposition unique, such a

decomposition will have limited use due to the lack of a proper physical interpretation.
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Before focusing on MIA, I apply Eq.(3.4) to the conventional orbit-fitting problems

discussed in Section 2.3. This will illustrate the meaning of Eq.(3.4). By setting P =

1, orbit-fitting problems can be accommodated easily into Eq.(3.4). F is supposedly

given by the machine model and the goal is to find the corresponding beam parameters

in Q. When the number of BPMs is larger than the degrees of freedom (M > d),

least-squares fitting can be used to find the best solution:

Q = BF (F TF )−1. (3.7)

This expression simply restates Eq.(2.20). Error analysis discussed in Section 2.3

indicates the potential to reduce the BPM random noise effects by using more and

more BPMs. The following sections will show how to realize this potential with MIA.

3.3 Principal Components Analysis via Singular

Value Decomposition

Principal component analysis is perhaps the most widely used multivariate statistical

analysis technique.[38] It was initially described by Karl Pearson (1901) and further

developed by Hotelling (1933). The major motivation is to account for the observed

sample variance-covariance with the minimum number of variables, which might be

linear combinations of a much larger number of observed variables. The basic idea is

to find the first “principal axis” in the data-point space such that the sample variance

of the components of all data points along this axis is maximum, then find the next

such axis that is orthogonal to the other principal axes, and so on. Clearly such

a procedure could determine the dimensionality of the system under investigation

and minimize the number of variables needed to describe the observed variations.

Principal-components analysis is a major linear data reduction technique.

From the measured BPM data B, the sample variance-covariance BTB is readily

available. In principle, each BPM reading might be a variable that leads to the

observed variations (e.g. there are no beam signals). However, we are interested in

the situations that the BPM data manifest the underlying beam dynamics that are
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responsible for the correlations. To find the leading “super” variable that accounts

for most of the observed variations, we seek a linear combination of the M -BPM

readings that yields the maximum variation or equivalently find a set of coefficients

v = {v1, · · · , vM}T such that var(Bv) is maximum,2 i.e.

vTBTBv

vTv
= max. , v ∈ RM (3.8)

Naturally the constraint vTv = 1 is used since we are interested in the direction

of vector v, not its length. Because BTB is a symmetric matrix, we know that

v must be the eigenvector with the largest eigenvalue (Courant-Fischer Minimax

Theorem, Eq.(B.23)), which corresponds to the variance.3 After finding the first

principal component v(1), the variation due to it is taken out and then the procedure

is repeated for the next largest component v(2), and so forth. Thus at each step the

new component need to be orthogonal to the previous principal components. For

a symmetric matrix, the eigenvectors of discrete eigenvalues are orthogonal to each

other, i.e. the eigenvectors of the symmetric matrix BTB provide all the principal

components.

Geometrically, the M BPM readings of each pulse correspond to a point in RM ,

the first principal component v(1) gives a vector pointing to the direction that has the

maximum variation; the second principal component points to the maximum-variation

direction that is perpendicular to the first one; and so on. From such a geometric

interpretation it is easy to understand that a principal components analysis should be

very useful to separate the subspaces containing signals from the subspaces containing

noise, because the former will have certain preferred directions. Furthermore, the

dimensionality of the signal subspace will be revealed and an orthogonal basis of the

signal subspace will be generated in the principal components analysis.

2As a simple example, consider pulses injected into a linear beam line with negligible initial
angular deviation. Then the signal at the m-th BPM reads R11(m)xp where xp is the incoming
position of the p-th pulse. In the M dimensional space, these pulses vary in the direction defined by
the vector ~R ≡ {R11(1), · · · , R11(M)}. To find the maximum variation direction ~v, one maximizes∑

p(~v · (~Rxp))2 and would obviously find ~v ∝ ~R, which is just the betatron pattern.
3A standard way to solve such a constrained maximization problem is to use Lagrange multiplier

λ and solve ∂vi

[
vTBTBv − λ(vT v − 1)

]
= 0, which yields BTBv = λv.
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Using the new set of variables (coordinate system) given by the principal compo-

nents, we can calculate their pulse-by-pulse values, which is given by w(1) = Bv(1),

w(2) = Bv(2), and so on. Note that, like the “spatial vector” v’s, these “temporal

vector” w’s are also orthogonal to each other because (w(i))Tw(j) = (v(i))TBTBv(j) =

λ(i)δij. Putting the spatial and temporal vectors into two matrices V = [v(1), v(2), · · · ]
and W = [w(1), w(2), · · · ], we can decompose the BPM data matrix B into

B = WV T . (3.9)

However, it is clear that principal components analysis in general cannot yield the

physical base decomposition because the physical bases are usually not orthogonal.

It is unrealistic to hope for understanding everything from the BPM data only. Ob-

viously, extra information is necessary to define the physical basis. Nonetheless, it

is possible to develop beam orbit control schemes using the orthogonal basis without

knowing the physical basis.

We can further separate out the variances and normalize the temporal base vectors

to u’s, i.e. u(1) = w(1)/
√

var(w(1)), u(2) = w(2)/
√

var(w(2)), etc. and get

B = USV T (3.10)

where S ≡ diag{σ1, σ2, · · · } = diag{
√

var(w(1)),
√

var(w(2)), · · · }. The σ’s are called

singular values of the matrixB and equal the square roots of the eigenvalues of the ma-

trix BTB. Such a decomposition is well known as the Singular Value Decomposition

(SVD). The set of singular values is called the singular value spectrum. Therefore,

when computing an SVD of B, we in fact are performing a principal components

analysis of the BPM data.

3.4 Outcomes of an SVD analysis

This section will focus on the physical meaning of the SVD results in order to illustrate

their usefulness and limitations for beam dynamics analysis.
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The basic structure (notations) of an SVD of a matrix B is given by:

B = USV T =
d∑
i=1

σiuiv
T
i , (3.11)

where UP×P = [u1, · · · , uP ] and VM×M = [v1, · · · , vM ] are orthogonal matrices, SP×M
is a rectangular matrix with nonnegative σi along the upper diagonal in non-increasing

order. d = rank(B) is the number of nonzero singular values. σi is the i-th largest

singular value of B and the vector ui (vi) is the i-th left (right) singular vector. Often

(assuming M < P since we are interested in overdetermined systems only) a trimmed

down version is used in which only the first M columns of U and the first M rows of S

are kept. The singular values are uniquely determined and the corresponding singular

vectors are determined up to a sign (assuming no degeneracy). The singular values

reveal information of the matrix rank while each set of singular vectors forms an

orthogonal basis of the various spaces of the matrix. These properties make the SVD

extremely useful. There are direct relationships between an SVD and the eigenvalue

problem of real symmetric matrices, which can be seen from

BTB = V S2V T and BBT = US2UT , (3.12)

i.e. the column vectors of V (U) are eigenvectors of the real symmetric matrix BTB

(BBT ) with eigenvalues given by the corresponding diagonal term σ2
i ’s.

Unlike the physical base decomposition given in Eq.(3.6), the orthogonal base de-

composition in Eq.(3.12) is uniquely determined by BTB, which is the sample covari-

ance matrix of BPM readings and should be a stable machine property.4 Therefore,

we can conclude that both the singular values (in S) and the right singular vectors

(in V ) should be repeatable for different ensembles of pulses, providing that the ma-

chine is stable (i.e. all machine conditions are the same). On the other hand, the U

matrix will change from one ensemble to another because BBT does not represent

a stationary statistical property of the system.4 In fact, V reflects spatial “lattice”

4BTB implies summation over pulses and reflects the sample variance-covariance of the underlying
distributions (see Eq.(3.6)), which should be stable. BBT implies summation over BPMs, thus it
obviously depends on the samples, which are changing all the time.
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properties of a machine and U reflects the pulse-by-pulse temporal variations of the

beam motion. The word lattice is in quotes because it could contain effects due to

the beam via wakefields, for example.

Now let us check out the SVD results of an experimental data set consisting of

horizontal BPM readings from the SLC linac for 5000 pulses and 130 BPMs. Results

from other machines have shown similar features. Fig. 3.1 plots the singular value

spectrum of B. It shows that most of the singular values are small and about the

same size. They are due to BPM noise. Thus the long flat part is called the noise

floor. It has interesting characteristics which I will describe in Section 3.9. Above

the noise floor, there are more than 10 significant singular values, which tell us the

degrees of freedom of the system, valuable information for a beam dynamics analysis.

For example, it indicates that the beam dynamics is much more complicated than

simple linear betatron motions. As discussed in the last section, the size of a singular
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Figure 3.1: Singular-value plot
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value reflects the variation magnitude (in the same unit of BPM readings) of the

corresponding mode. Let us take a more detailed look of the singular values. BTB

can be written as

d∑
i=1

σ2
i viv

T
i =




var(BPM1) cov(BPM12) · · ·
cov(BPM21) var(BPM2) · · ·

...
...

. . .


 . (3.13)

Comparing diagonal terms we have

var(BPMk) =
d∑
i=1

σ2
i vi(k)

2, k = 1, · · · ,M (3.14)

and
M∑
k=1

var(BPMk) =
d∑
i=1

σ2
i . (3.15)

These equations confirm that the variance of the k-th BPM readings is the sum over

the i modes with σ2
i vi(k)

2 from each. Of course the square of a singular value is the

sum of the variances of BPM readings due to the corresponding mode. Since a spatial

vector vi is normalized to unity, an evenly distributed signal v2
i (k) ∼ 1

M
requires

σ2
i ∼M . For localized BPM noise, v2

i (k) is constant and so is σ2
i . Normalized values

are used in the singular value spectrum plot since they reflect the average amplitudes

of signals. Under this normalization, σ̂signal is roughly constant with changing M

while σ̂noise ∝ 1√
M

. This is a very important characteristics of the singular values.

Figure 3.2 shows the first 7 singular vectors and corresponding singular values (in

µm on the left labels) of the above SLC data set. We see that the singular values go

down quickly from about 10µm to 1µm. Therefore at a 1µm coherent signal level,

all the motions observed in B would be a linear combination of less than 10 modes.

The most striking patterns are modes #5 and #6. Clearly they are due to individual

BPMs. This example shows that one can easily identify problematic BPMs, valuable

information for any beam control and dynamics observation. The top 2 modes are
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Figure 3.2: Singular-vector plot
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mainly due to the 2 degrees of freedom in the horizontal betatron motion. The quasi-

periodic structure is due to the focusing-defocusing optics. The vector sum of these

two modes is approximately proportional to the beta function (see Eq. 3.40).

Although singular-vector plots yield valuable information such as the location of

noisy BPMs, it has limited use otherwise, since the orthogonal decomposition often

mixes various different physical effects. As mentioned earlier, extra information is

required to determine the physical base decomposition. Nonetheless, the orthogonal

base decomposition provides an important step towards physical base decomposition.

Another important outcome of SVD analysis is the separation of signal subspace from

the noise subspace.

To emphasize that the right (v’s) and left (u’s) singular vectors reflect the spatial

and temporal characteristics of a mode, Fig. 3.3 shows both the v vector and u

vector corresponding to the same singular value. It results from a SVD analysis of

an SLC data set with one corrector dithered (i.e. varied according to certain given

0 20 40 60 80 100 120
-0.5

0

0.5

BPM index

0 500 1000 1500 2000 2500 3000 3500 4000
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Spatial pattern (normalized)
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Figure 3.3: The spatial and temporal patterns of the mode due to a dithered corrector.
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pattern, e.g. sinusoidally). The spatial vector clearly yields the location where the

dither started and the corresponding betatron pattern. The temporal vector yields

the given pulse-by-pulse dither pattern. (The data set consisted of 20 subsets with

200 pulses in each.) This example vividly demonstrates the physical meaning of the

singular vectors. The singular value yields the rms amplitude of the mode.

3.5 Reduction of random noise —

Breaking the pulse-by-pulse resolution limit

In beam dynamics experiments, one often encounters BPM resolution problems.

Sometimes simple pulse-by-pulse averaging can improve accuracy. But often single-

pulse measurements with resolution better than the BPM resolution are desirable.

In this case, an option might be some sort of average over a large number of BPMs.

Were there M identical BPMs at the same location to monitor the beam position,

averaging these BPM readings would improve the measurement by a factor of 1√
M

.

In reality, one has many BPMs distributed along a beam line. The question is: even

though we do not know the exact relations among BPM readings for a pulse, can we

take advantage of the potential statistical benefits of using a large number of BPMs?

This can be achieved from a SVD analysis of the BPM-data matrix. The method

is fairly simple: compute the singular value decomposition of B = USV T , set the

singular values due to noise to zero to form the noise-cut S, then recompute USV T .

The resulting matrix

B = USV T +O

(
σBPM

√
d

M

)
(3.16)

has a noise term reduced by
√
d/M where d is the dimension of signal space. In

the following sections, I will discuss the SVD in detail and show how to identify the

singular values due to noise.

Figure 3.4 demonstrates the effect of the noise-cut. As a test, 5000 pulses over 125

BPMs were generated to simulate various signals in SLC (see Section 4.1 for more

details). Then random noise, 1 µm for the first 7 and 10 µm for the rest BPMs, was
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Figure 3.4: Effect of cutting noise. “◦” represents the initial noise and “•” represents
the residual noise.

added. After cutting the noise, the residual noise was obtained by subtracting the

signals from the noise-reduced matrix. Figure 3.4 plots the original noise in circles

and residual noise in dots for the first pulse. Results for all other pulses are similar.

It is remarkable that this simple procedure can significantly reduce the random noise

of each individual BPM reading. In other words, we can improve effective BPM

resolution individually by using a large number of BPMs and sufficiently large number

of pulses. Though simple and powerful, this method seems not to have been used

before for beam dynamics analysis. However, a similar method ( i.e. setting signal

instead of noise singular values to zero) has been used for estimating BPM resolutions

[66].

3.6 Analyzing degrees of freedom along a beamline

In any dynamical system, the degrees of freedom of the system offers very basic

information about the dynamics. It reflects how many things are independently

changing. A simple example can illustrate why it is important to analyze the degrees

of freedom in a beam line. Suppose one has an “ideal” beam line in which there

is no coupling between horizontal and vertical planes, no significant nonlinearities,

current is low so wakefield effects are negligible, no energy variation, etc., then the
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only possible motions are betatron motions excited by the initial beam position and

angle. It is clear that there are only 2 degrees of freedom (usually characterized

by the so called sine-like and cosine-like trajectories) available in the system. Now,

suppose one of the corrector magnets in the beam line malfunctions and drifts around,

it will kick the beam and excite an independent betatron motion starting from its

location. Analyzing such a system, one will find 3 independent BPM patterns instead

of 2. Furthermore, one can try to find where the new degree of freedom starts, and

therefore locate the jitter source.

Section 3.4 showed that the singular value spectrum can reveal the degrees of

freedom (d=rank(B)) of a system, after measuring the BPM-data matrix B for a

sufficiently large ensemble of pulses. If there is no noise, the number of nonzero

singular values gives the d value. In practice, one has to find the noise level and set

up a criterion to determine which singular values are significant. This is a subtle

issue which I will address in Section 3.9. Fig. 3.1 showed one typical singular-value

plot. Above the noise floor, there are about 10 singular values. As shown in Fig. 3.2,

some of those are due to large individual BPM noise levels instead of beam dynamics.

Even so, there are still more degrees of freedom in this system than assumed by the

typical on-line machine models. A traditional model-fitting approach is bound to

miss important dynamics in this beam line!

It is useful to trace the increase of the number of degrees of freedom along the

beam line using SVD analyses of an increasing number of BPMs, i.e. including only

the first m BPM readings and perform an SVD analysis on this data set for m ≤M .

Such systematic SVD analyses can reveal the locations where new degrees of freedom

appear. These locations could be a jittering source such as a varying corrector, or a

structure misalignment that shows up as a jittering source because of current jitter,

and so on. Figure 3.5 is an example of such a plot (using the same data set of Fig. 3.1

including only the top 10 singular values), which is called a “degrees-of-freedom plot”.

Unlike Fig. 3.1, the singular values plotted here are not normalized by the number

of BPMs. (thus one must divide the ending values in Fig. 3.5 by
√

130 in order to

get the first 10 points of Fig. 3.1). There are many general features in a degrees-

of-freedom plot of a normal running beam line. Modes due to random noise yield
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Figure 3.5: Degree-of-freedom plot

flat lines, while coherent signals grow with the number of BPMs used. The slope of

a curve indicates the local strength of that signal. Usually, there are two curves on

the very top of the plot well separated from the rest. They are mainly due to the

2 betatron modes. Sometimes, there is only one large singular value curve because

the other mode is hardly excited due to a beam injection constraint (e.g. a negligible

angular fluctuation). There are small wiggles on most of the curves, which are the

result of periodic lattice function changes. The merit of a degrees-of-freedom plot

is to analyze the appearance of new degrees of freedom, and the exact values are

not that important since they most often do not correspond to strengths of physical

modes (see discussion on orthogonal basis in the previous sections). If a mode is due

to an individual BPM, we will see a curve like a step function starting at that BPM.

The step level indicates the noise magnitude. There are 3 such cases clearly shown in

Fig. 3.5 (all noisy BPMs are kept in order to show their effects). There is a baseline
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in a degrees-of-freedom plot, which reflects the BPM resolutions. In this example,

the BPM resolutions are about 10 µm. The beginning slope of eigenvalues 3–10 is

special to this example, since there are several high resolution BPMs at the beginning

of the linac. However, M ≥ d is required to establish various modes. Thus, the points

within the first few BPMs are only useful to determine initial betatron amplitudes.

Before leaving this section, I mention that instead of using more and more BPMs

as shown above, one can analyze various subsets (e.g. every 10 BPMs) of all BPMs

and locate where new degrees of freedom appear. Unfortunately, this approach loses

the advantage of using large number of BPMs, and may have more trouble detecting

weak signals. Though this problem may be alleviated by cutting noise as described

before, there are physical patterns which look very much like a betatron motion locally

and will be degenerate in a localized degrees-of-freedom analysis. Therefore, such an

approach is usually not preferred.

3.7 Physical base decomposition via time struc-

ture of pulse signals

As I mentioned earlier, the orthogonal bases obtained from SVD are often a mixture

of various physical patterns and therefore hard to interpret. Extra information is

necessary to achieve a physical base decomposition. In a beam line, in addition to the

transverse beam positions, there are various kinds of pulse-by-pulse beam and machine

parameters that can be monitored. At SLC, for example, we can monitor beam

current, bunch length, incoming beam (longitudinal) phase, relative beam energy,

klystron phases along the linac, and so on. This section will discuss how to take

advantage of such information. If one prefers a simple example before the general

description, please start from Eq.(3.22) and then come back.

Mathematically, this problem is similar to the orbit fitting problem discussed

earlier. Instead of knowing F , we know Q (or a subset of it) and wish to solve for

F . If we knew all the physical variables with sufficient accuracy, the corresponding
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physical basis could be computed as

F T = C−1
Q QTB +O

(
σBPM√
P

)
. (3.17)

This expression emphasizes the importance of underlying correlations among the ob-

served variables.

Note that the accuracy of Eq.(3.17) does not rely on the number of BPMs used.

It simply fits the readings of each BPM to various temporal patterns individually

and ignores any correlations among BPM readings. As I discussed earlier, the BPM

noise can be reduced statistically by taking into account the correlations among BPM

readings. Therefore, if we cut the noise first and then apply Eq.(3.17), the noise level

can potentially be reduced by a factor of
√

d
M

, and we have

F T = C−1
Q QTUSV T +O

(
σBPM

√
d

P M

)
(3.18)

where USV T is the SVD of B, and S indicates the zeroing of singular values that have

been identified as due to noise. This statistical error limit (60 nm in the above SLC

case) is hard to achieve due to problems such as machine instability and incomplete

information in Q. Nonetheless, it indicates the inherent potential sensitivity of this

method.

Usually we know only a subset of Q, say Qs of Q = [Qs, Qr]. We can still calculate

Fs according to Eq.(3.17) with Qs, The error due to the missing part is

(Fs − F exact
s )T = (QT

sQs)
−1QT

sQrF
T
r (3.19)

Therefore, if the known subset Qs is uncorrelated with the remaining unknown tem-

poral patterns, i.e. QT
sQr = 0, then we would obtain the same results as if we had

measured all Q. Otherwise, the unknown part of the physical basis (i.e. Fr) will be

mixed into the measured parts. This can be a limitation of a totally non-invasive

procedure. However, many known physical variables can be slightly modulated on

purpose (incoming position, bunch length, and longitudinal phase, for example). In
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this way the patterns due to these changeable variables can be identified and the pat-

terns corresponding to unknown or unchangeable variables can be further clarified.

Then, one will change additional suspected variables in search for these unknowns.

Often the measured temporal patterns of certain physical variables have limited

accuracy due to measurement difficulties. To evaluate the effect of such errors, let us

assume the measured signals are Q + ∆Q where ∆Q represents the error, then the

error in F can be written as

∆F T ≡ C−1
Q+∆Q (Q+ ∆Q)TB − F T

= − C−1
Q+∆Q ∆QT∆Q F T (3.20)

where I have assumed that the measurement errors ∆Q are independent of Q, i.e.

QT∆Q = 0. Eq.(3.20) shows that the errors in temporal pattern measurement come

into play mainly at the second order. Therefore, they are more tolerable than BPM

errors. Furthermore, if we know the variance-covariance ∆QT∆Q of the measurement

errors,5 Eq.(3.17) can be modified to take Q errors into account via

F T =
(
I − C−1

Q+∆Q∆QT∆Q
)−1
C−1
Q+∆Q(Q+ ∆Q)TB (3.21)

Note that all the quantities in this expression are measurable.6

Eq.(3.17) is mathematically the same as Eq.(3.7) but they are different physically,

and it turns out to be very useful in the measurement of physical-basis patterns.

Eqs. (3.17), (3.18) and (3.21) seem to have never been used before, at least not in

this generalized form.

Here is a simple example to illustrate the above abstract matrix formulae. Con-

sider an ensemble of BPM readings given by

{fp = ∆xpfx + ∆ypfy | p = 1, · · · , P} (3.22)

5Of course there is no way to know ∆Q, but statistical characteristics such as ∆QT∆Q may be
obtained through equipment calibrations.

6The correction factor in the first parenthesis of Eq.(3.21) reduces to Eq.(2.31) for that simple
case, in which ∆QT∆Q = σ2

noise and CQ+∆Q = σ2
signal + σ2

noise.
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where fx and fy are two base vectors (BPM patterns) such as betatron modes. ∆xp

and ∆yp are the “initial” parameters for each pulse. Suppose we can measure ∆x

and ∆y but with certain noise given by εx and εy respectively, i.e. we can measure

the temporal patterns f , ∆x + εx, and ∆y + εy. For simplicity, let us consider the

case that the signals are independent of all noise and the noise is uncorrelated. To

extract fx and fy, simply compute 〈(∆x+ εx)f〉p and 〈(∆y + εy)f〉p and find

[
〈(∆x+ εx)f〉
〈(∆y + εy)f〉

]
=

[
〈(∆x+ εx)

2〉 − 〈ε2x〉 〈(∆x+ εx)(∆y + εy)〉
〈(∆y + εy)(∆x+ εx)〉 〈(∆y + εy)

2〉 − 〈ε2y〉

][
fx

fy

]
(3.23)

where 〈 〉 means ensemble average. I have used 〈∆x εx,y〉 = 0, 〈∆y εx,y〉 = 0, 〈εx εy〉 =

0, i.e. the signals ∆x and ∆y are assumed independent of noise, and the noise

amplitudes are uncorrelated with each other. Inverting the matrix gives the solution

[
fx

fy

]
=

[
〈(∆x+ εx)

2〉 − 〈ε2x〉 〈(∆x+ εx)(∆y + εy)〉
〈(∆y + εy)(∆x+ εx)〉 〈(∆y + εy)

2〉 − 〈ε2y〉

]−1 [〈(∆x+ εx)f〉
〈(∆y + εy)f〉

]
(3.24)

Note that all the quantities in the right hand side are in principle measurable and an

exact solution can be obtained even though there is random noise in the measured

signals. We can separate the noise effect and write the solution as

[
fx

fy

]
=

[
I − C−1

Q+∆Q

(
〈ε2x〉 0

0 〈ε2y〉

)]−1

C−1
Q+∆Q

[
〈(∆x+ εx)f〉
〈(∆y + εy)f〉

]
(3.25)

where

CQ+∆Q =

[
〈(∆x+ εx)

2〉 〈(∆x+ εx)(∆y + εy)〉
〈(∆y + εy)(∆x+ εx)〉 〈(∆y + εy)

2〉〉

]

is the covariance matrix of the measured signals (with noise in it). The first bracket

in Eq.(3.25) represents the modification due to the noise, and the rest is the typical

least-squares solution. This equation is a special case of Eq.(3.21).
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3.8 Exploring the unknown degrees of freedom

The degrees-of-freedom analysis discussed in section 3.6 can reveal how many linearly

independent sources of motion exist and where they become significant along a beam

line. Usually some unknown degrees of freedom will show up during a degrees-of-

freedom analysis. The ability to reveal unexpected degrees of freedom in a beam

line is one of the achievements of MIA. To understand and characterize the unknown

degrees of freedom is obviously desirable but much harder to achieve. In general one

can not resolve all physical base patterns by analyzing only the BPM data. Extra

information is necessary. However, in this section, I describe a method developed for

exploring the unknown degrees of freedom.

The basic idea is to separate one-by-one the various modes according to the se-

quence they show along a beam line. For example, suppose that in addition to the

incoming betatron motion, there is a malfunctioning corrector located at one third

of the way along the beam line and a large structure (e.g. rf cavity) misalignment

at two thirds of the way along the beam line. A degrees-of-freedom analysis of such

a beam line will show at least four significant modes: two betatron modes starting

from the beginning, one mode starting at the one-third point, and another mode

starting at the two-thirds point. Clearly, the physical basis will have these spatial

characteristics. However, the eigenmodes obtained from a SVD analysis can mix all

modes together and may not obviously reflect the above spatial characteristics. To

improve upon the SVD results, one can use the first one third of the beam line to

determine the temporal patterns of the two betatron modes, project out the betatron

modes of the whole beam line, and then remove the betatron modes from the data.7

SVD analysis of the residual will show nothing until one-third down the beam line, a

mode starting after that, and the location where another new mode shows up. Based

on the new degrees-of-freedom analysis, one can SVD analyze the section from the

beginning to right before the next mode shows up. Since in this section there exists

7If the betatron amplitude is correlated say with the current, then some of the wake starting at
the two-third point can mix into a betatron mode determined in this way. It would be advantageous
to purposely dither a corrector at the beginning of the beam line. Then the mode projected out
would be guaranteed to be pure betatron motion.



CHAPTER 3. MODEL-INDEPENDENT ANALYSIS OF BEAM DYNAMICS 45

only one mode, which must be due to the malfunctioning corrector, the temporal

vector of this mode may be used as the temporal pattern of the corrector variation.

Such a procedure can be repeated down the beam line until the temporal patterns of

all degrees of freedom are determined.

The following is a mathematical description of the above procedure. We start

with the BPM data matrix B of a beam line ( assume noisy BPMs have been taken

out and the random noise has been reduced as described in Section 3.5). Let B(l)

denotes the sub-matrix containing the first l columns (BPMs) of B.

1. Perform a degrees-of-freedom analysis of B to identify the location, say l1, up

to where (but not beyond) only the incoming betatron motions are significant.8

2. Do a SVD analysis of B(l1) = U (l1)S(l1)V (l1) and take say the first two (the

number of betatron modes) temporal vectors u
(l1)
1 and u

(l1)
2 as the temporal

pattern of the incoming betatron motions.

3. Use U
(l1)
1:2 ≡

[
u

(l1)
1 , u

(l1)
2

]
to extract the spatial betatron vectors f1 and f2

of the whole beam line as described in Section 3.7 by computing [f1, f2] =(
U

(l1)
1:2

)+

B, where the superscript + means the pseudo-inverse of a matrix.

(A+ = (ATA)−1AT if ATA is nonsingular; see Appendix A.3 for details.) Note

that f1,2 should be accurate up to l1. After that, other modes could be mixed

in if they are correlated with the betatron motions. See Eq.(3.19) and the

discussion there.

4. Take the betatron motions out of all the BPMs by computing the remainder

Br1 = B −
[
u

(l1)
1 , u

(l1)
2

]
[f1, f2]

T , where the subscript r1 indicates the remainder

of first iteration.

In the second iteration, apply the same steps to Br1 : identify the location l2 up to

where only one new degree of freedom exist; find the temporal pattern u
(l2)
3 which is

associated with this degree of freedom; include this new temporal pattern into the U

8I assume the beginning section the beam line is clean and simple, i.e. no extra degrees-of-freedom
except incoming betatron motions. In a linac, as in the SLC, this is usually true. In a ring, one can
always choose the simplest section as the starting location for B.
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matrix as U
(l2)
1:3 ≡

[
u

(l1)
1 , u

(l1)
2 , u

(l2)
3

]
and get [f1, f2, f3] =

(
U

(l2)
1:3

)+

B; take these three

modes out and get the remainder Br2 = B −
[
u

(l1)
1 , u

(l1)
2 , u

(l2)
3

]
[f1, f2, f3]

T . Continue

such iteration until the end the beam line is reached.

Section 4.1 will provide an example of the above described analysis procedure.

Here only general remarks will be presented. First of all, this procedure usually will

generate a new decomposition of BPM data matrix, which is likely to be closer to the

physical base decomposition than the orthogonal base decomposition. Note that the

number of the new bases may be larger than the initial degrees of freedom, i.e. there

may be near degenerate bases. The major improvement of this new decomposition

is that it reflects spatial locations of various sources, which could be informative and

important. However, this analysis becomes difficult when the sources are weak and

close to each other, because in such cases, Step 2 will suffer from accuracy problems.

The fundamental limitation of such analysis is mentioned in Step 3. The following

paragraph will furhter illustrates this issue.

Let us partition the temporal pattern matrix into Q = [Q1, Q2], where Q1 is

known. The corresponding spatial bases partition is F = [F1, F2] where both F1

and F2 are partially known up to say location l. (In fact F2 is zero up to l.) Let

F̂1 = Q+
1 B, the estimated vectors for F1 as described in Section 3.7. The residual

matrix after taking out variations due to Q1 can be written as

Br ≡ QF T −Q1F̂
T
1 = Q1F

T
1 +Q2F

T
2 −Q1

(
F T

1 +Q+
1 Q2F

T
2

)
=

[
I −Q1

(
QT

1Q1

)−1
QT

1

]
Q2F

T
2 . (3.26)

Therefore the residual contains only the part of Q2F
T
2 that is perpendicular to Q1,

due to the projection operator inside [ ]. Note that knowing part of F2 does not help.
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3.9 Noise floor characteristics and BPM resolution

spectrum

I claimed earlier that the singular values in the flat floor (as shown in Fig. 3.1) of a

singular-value plot are due to BPM noise. In this section I will discuss characteristics

of the noise floor and confirm that those singular values indeed behave like noise. First

of all, without the noise term in Eq.(3.4), the rank of B will be d. Since physically we

do not expect a large d, most of the singular values should be zero if not due to noise.

More convincing evidence comes from the statistical characteristics of the noise floor.

We can examine the data and see how the noise floor behaves when changing BPM

number M and pulse number P .

Figure 3.6 shows the dependency on M . In the top frame the 4 curves represent

the singular values of the same 5000 pulses but with 30, 60, 90, 120 BPMs respectively.

The insertion shows the first 10 singular values. In addition to the general appearance

of a noise floor (i.e. a long flat part and small tails at ends), the noise levels indeed

decrease with increasing M . The bottom frame plots in circles the inverse square of

the median values of the noise floor part of the above 4 curves vs. M . The solid line

is a linear fit. Such 1√
M

dependency indicates that the long tail in the singular-value

plot is indeed due to random noise, since coherent signals will have roughly the same

singular values as M increases. (As can be seen from the insertion, the singular values

of signals may vary because the variation amplitude of a signal may not be uniform

across the BPMs.) Note that, were there other distributed sources of random noise

(such as dark current in accelerator structures) affecting the measurement, the noise

floor would not decrease as 1√
M

.

Figure 3.7 shows the noise floor dependency on P . The first frame plots respec-

tively singular values of 7 ensembles of 200, 400, 800, 1600, 3200, 5000, 10000 pulses,

with M = 120 for all cases. It shows that the slope of the noise floor decreases with

increasing P , while the average noise levels stay approximately the same. The second

frame plots the variance of the eigenvalues (excluding the first 15) vs. P . The circles

correspond to 25 sample sets randomly polled from 12,000 measured pulses and the

solid curve is a least-squares fit to a second order polynomial in 1√
P
, which is the
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Figure 3.6: M dependency of noise floor

expected P dependency as explained in Section 3.10. We see that the measured data

fit the statistical noise model very well even to P = 10000. This indicates that we

can reasonably expect that if we were to project out a specific time pattern, as in

Section 3.7, we would get a resolution improvement of 100 over the single-pulse BPM

resolution. The slope reaches a limit as P → ∞, which is taken to be the intrinsic

resolution spread among the BPMs. Thus the noise floor of the singular-value plot

reflects the BPM resolution spectrum, provided that the pulse ensemble is sufficiently

large.

From the fixed point in the top frame, the average BPM resolution is about
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Figure 3.7: P dependency of noise floor

√
120∗0.8 = 9µm. From the slope, the resolution spread is estimated at about 2 µm.

To estimate the resolution of individual BPMs, one can use the method mentioned

at the end of Section 3.5. The little tail at the very end of Fig. 3.1 arises from several

high resolution BPMs at the beginning of the beam line. I deliberately removed those

BPMs from the data in Figs. 3.6 and 3.7 for clarity.

Simulation studies of noise-only cases show the same M and P dependencies.

Therefore the singular-value floor must be due to the BPM noise, though it is still

possible, of course, that there are small coherent signals buried in this noise floor.
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3.10 Understanding the P-dependency

In this section, I derive expressions for the mean and variance of the eigenvalue λ’s of

the variance-covariance matrix CB = BTB in order to understand the P dependency

of noise floor. At P = ∞ we have the decomposition ĈB = V̂ Λ̂V̂ T , whereˆindicates

the P → ∞ quantities and Λ̂ ≡ diag(λ̂1, · · · , λ̂M). For a finite P , statistical noise

will result in slightly different CB, V , and eigenvalues. However V̂ TCBV̂ should still

be close to Λ̂. Let

V̂ TCBV̂ = Λ̂ + E , (3.27)

where the symmetric matrix E ≡ {εij} represents the difference due to statistical

noise. Taking the trace of both sides of Eq.(3.27) yields

tr(CB) =
M∑
i=1

λi =
M∑
i=1

λ̂i +
M∑
i=1

εii (3.28)

Multiplying each side of Eq.(3.27) by itself and then taking the trace yields

tr(C2
B) =

M∑
i=1

λ2
i =

M∑
i=1

λ̂2
i + 2

M∑
i=1

λ̂iεii +
M∑
i,j=1

ε2ij (3.29)

Combining Eqs. (3.28) and (3.29) we have

var(λ) = var(λ̂) +
1

M

M∑
i,j=1

ε2ij +
2

M

M∑
i=1

∆λ̂i εii −
(

1

M

M∑
i=1

εii

)2

where ∆λ̂ ≡ λ̂− 〈λ〉. The last term is obviously much smaller then the second term

and can be dropped. Thus the difference in mean value and variance due to statistical

noise can be expressed as

〈λ〉 − 〈λ̂〉 =
1

M

M∑
i=1

εii (3.30)

var(λ) − var(λ̂) ' 1

M

M∑
i,j=1

ε2ij +
2

M

M∑
i=1

∆λ̂i εii
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Since both diagonal term εii and off-diagonal term εij have 1√
P

dependency for large P ,

the differences vanish when P → ∞ as they should. The mean value approaches the

real value as 1√
P
, while the variance behavior is more complicated. For small P and

∆λ̂, the first term dominates and yields a 1
P

dependency. As P becomes sufficiently

large, the second term will become dominate and results in a 1√
P

dependency, provided

that the system is sufficiently stable. The summations in these expressions can greatly

suppress the fluctuation due to statistical quantity ε’s, thus we can expect a clear P

dependency even for small number of pulses.

3.11 Kick analysis of base vectors

After the physical bases are obtained, most of the base vectors look like betatron

oscillations because no matter what the physical sources, the resultant motion of the

beam centroid is usually a sum of excited betatron oscillations. We can improve

our understanding with a kick analysis. The goal is to identify the source kicks

that generate the physical patterns. The basic idea has two ingredients: 1) kick

representation and 2) removal of betatron response due to the lattice. The kick

representation is just an equivalent representation of the same vector. Instead of

giving the resultant motion, the kick representation simply shows the kicks which

cause the motion. Since forces (which cause momentum changes) are much more

likely to be localized along a beam line, the kick representation of a physical base

usually has a simpler structure and reveals the location of the sources contributing

to the motion.

There are many ways to accomplish kick analysis, including the simple method

described here. Assume the betatron basis are given by u and v, and a physical

pattern g is to be analyzed. For any 3 consecutive points (which form 3D vectors ~u,

~v and ~g), use the first 2 points to find a combination of the betatron basis that fits

the first 2 points of g (which is always possible) and then predict what the 3rd point

of g should be if it follows a betatron oscillation. This concept can be represented by

the simple formula

~g = α~u+ β~v + ∆z (0, 0, 1) (3.31)
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where α, β, and ∆z are coefficients. A dot product of ~u× ~v to both sides yields the

differences,

∆z =
(~u× ~v) · ~g
(~u× ~v)3

, (3.32)

which are assigned to the corresponding BPMs as the result of a kick analysis of g.

∆z gives the exact beam displacement due to potential kicks.

If kick angles are desired, one has to divide the above beam displacements by the

R12 between the observed displacement and the location of the corresponding kick.

However, such information (especially where the kick started between the two BPMs)

is usually not available. A good approximation is to assume the kick is located at

the previous BPM and use the distance between the BPMs as the R12. Note that the

above calculated displacements do not suffer such problems.

Eq.(3.32) looks cute but it is only applicable to the 3-point fittings. Sometimes

it may be helpful to use more points to improve the accuracy of kick analysis. To

accomplish this, one can determine the coefficients α and β first by least-squares

fitting and then use them to compute the projected value for the last BPM. Assume

k BPMs are used, the solution can be written as

∆z = gk − (uk, vk)




u1 v1

u2 v2

...
...

uk−1 vk−1




+


g1

g2

...

gk−1


 (3.33)

where + means matrix pseudo-inversion (see Appendix A.3) to solve the least-squares

fittings. When k = 3 this general formula is the same as Eq.(3.32), which is easy to

confirm since the pseudo-inversion becomes ordinary matrix inversion. In general,

using more BPMs for each subsection will improve fitting accuracy; however, when

there are kicks close to each other, it may not be appropriate to use many BPMs.

Figure 3.8 shows two examples of a kick analysis in a simulation study, in which

there are two 300 µm structure misalignments, 10% bunch length jitter, and 0.5◦

incoming beam (longitudinal) phase jitter (in addition to the betatron oscillations

etc.). The top two plots are the two vectors corresponding to the bunch length
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and incoming beam phase jittering respectively. The bottom two plots give the kick

analysis of the two base vectors according to Eq.(3.32). Although the two base vectors

look rather similar (like other betatron oscillations as well), the kick analysis yields

completely different characteristics. The bunch length vector is clearly the result of

two major localized wakefield kicks generated by the two structure misalignments.

The kick analysis nicely shows the locations and strengths. The strength difference is

due to the energy dependency of the wakefield kick. On the other hand, the incoming

beam phase vector does not consist of any major kicks at all, because the wakefield

kicks are not sensitive to the incoming beam phase change (the effect of beam energy

change is rather weak). The apparent oscillation is due to the energy dependency of

the betatron oscillation frequency. The wakefield kick merely launches the oscillation,

which then grows with the increase of the accumulated betatron phase difference.
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Figure 3.8: Examples of kick analysis of physical basis
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3.12 Measurement and analysis of Wronskian de-

terminant

This section discusses the determination and application of a Wronskian determinant

to a beam line transverse dynamics. Since in a linac the transverse beam dynamics

is affected by the longitudinal acceleration, I consider the transverse beam dynamics

with/without acceleration. Let γ(s) be a predefined energy profile along the linac,

the basic transverse equation of motion for a single particle is governed by

d

ds

(
γ(s)

d

ds
y

)
+K(s)y = G(s). (3.34)

If there is no acceleration, i.e. γ(s) = constant, this equation reduces to the inhomo-

geneous Hill’s equation y′′ + k(s)y = g(s) which has well known solutions.

From the general theory of ordinary differential equations, the second order ho-

mogeneous differential equation y′′ + γ′
γ
y′ + K(s)

γ
y = 0 has an important property that

the Wronskian determinant can be written as

W (s) ≡
∣∣∣∣∣ y1 y2

y′1 y′2

∣∣∣∣∣ = W (s0) exp{−
∫ s

s0

γ′

γ
ds}

= W (s0)
γ(s0)

γ(s)
(3.35)

After obtaining the two betatron bases via MIA, one can compute the Wronskian

as follows. Considering any two BPMs, from the betatron bases u and v, we have

orbit values u1, u2 and v1, v2. Using the R matrix from the first to the second BPM,
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we have9

W (s1) =

∣∣∣∣∣ u1 v1

u′1 v′1

∣∣∣∣∣ =

∣∣∣∣∣ u1 v1

1
R12

u2 − R11

R12
u1

1
R12

v2 − R11

R12
v1

∣∣∣∣∣ =
1

R12

∣∣∣∣∣ u1 v1

u2 v2

∣∣∣∣∣ , (3.36)

thus ∣∣∣∣∣ u1 v1

u2 v2

∣∣∣∣∣ = R12(s1 → s2)W (s1) (3.37)

Note that this expression holds for any two independent betatron orbits, which are

available in an MIA analysis. In fact, it appeared in the denominator of kick analysis

expression Eq.(3.32). Another interesting factor that may come into this expression

is the BPM gains g1 and g2. Taking this into account, we have

∣∣∣∣∣ u1 v1

u2 v2

∣∣∣∣∣ = g1g2R12(s1 → s2)W (s1) (3.38)

There are a few potential uses of this expression:

• If reliable information is available on the BPM calibration, beam energy profile,

and the R12, one can check if and where the dynamics of the system departs

from Eq.(3.34) due to, for example, the wakefield effects.

• If the beam dynamics is conditioned to satisfy the Eq.(3.34), one can use

Eq.(3.38) to determine the R12, calibrate BPM gains, or measure energy profile

from knowledge of the others. Note that although two gain factors appear, only

one is actually free.

9In addition,

W (s2) =
∣∣∣∣ u2 v2
u′2 v′2

∣∣∣∣ =
∣∣∣∣R(s1 → s2)

(
u1

u′1

)
, R(s1 → s2)

(
v1
v′1

)∣∣∣∣ = |R(s1 → s2)| ·
∣∣∣∣ u1 v1
u′1 v′1

∣∣∣∣
= |R(s1 → s2)| ·W (s1)



CHAPTER 3. MODEL-INDEPENDENT ANALYSIS OF BEAM DYNAMICS 56

3.13 Betatron modes

This section provides an analytical SVD analysis of the betatron modes for 1-D linear

optics in order to gain a more quantitative insight into the SVD analysis. This simple

case can often explain the top two eigen-modes because the linear betatron motion

usually dominates the beam dynamics in most accelerators, especially in rings. I will

ignore BPM noise for simplicity. In such a system, the m-th BPM reading for the

p-th pulse can be expressed in action-angle variables {Jp, φp} as

bmp =
√

2Jpβm cos(φp + ψm) (3.39)

where βm is the beta function at the m-th BPM and ψm is the phase advance from a

starting point to the m-th BPM. I assume the action J and angle φ are independent

of each other, which is basically true in rings.

Without much computation, a useful expression for determining the beta function

can be obtained as

β = 〈J〉−1
(
λ+v

2
+ + λ−v2

−
)

(3.40)

from Eqs. (3.39) and (3.14) via 〈b2〉 = 〈2Jβ cos2 φ〉 = 〈J〉β = λ+v
2
+ +λ−v2

−, where λ±
and v± are the eigenvalues and eigenvectors of the two betatron modes. Although the

betatron modes may change from one ensemble to another due to sample fluctuation,

Eq.(3.40) should at least provide a good measurement of the machine beta function,

provided that the BPM gains have been taken care of. Even if there are non-betatron

modes, Eq.(3.40) could still yield a good estimate as long as the additional modes are

weak.

Now let us go through the exercise of computing the betatron modes. For readers

who do not wish to follow such an exercise, Eqs. (3.46)–(3.49) are the expressions for

the two betatron modes. There could be simpler ways to get these expressions, how-

ever, the purpose of this exercise is to go through the general procedure analytically.
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From the BPM data given in Eq.(3.39), the elements of the matrix BTB read

(BTB)mn =
P∑
p=1

bmp b
n
p

=
P∑
p=1

Jp
√
βmβn [cos(ψm − ψn) + cos(2φp + ψm + ψn)]

=

(
P∑
p=1

Jp

)√
βmβn cos(ψm − ψn). (3.41)

The last step uses the assumption that the action and angle variables are independent

of each other and the angle variable φ is uniformly distributed over [0, 2π]. Thus, the

variance-covariance matrix CB = BTB
P

can be written as

CB = 〈J〉p




β1

√
β1β2 cos ∆ψ12 · · · √

β1βM cos ∆ψ1M√
β2β1 cos ∆ψ21 β2 · · · √

β2βM cos ∆ψ2M

...
...

...
...√

βMβ1 cos ∆ψM1

√
βMβ2 cos ∆ψM2 · · · βM


 (3.42)

where 〈J〉p is the ensemble average of the action variable; ∆ψmn is the phase advance

between the m-th and n-th BPMs.

To find eigenvalues and eigenvectors of CB, we need to solve for φ0 so that the

corresponding orbit v = {√2Jβm cos(φ0 + ψm),m = 1, · · · ,M} satisfies the secular

equation

CB v = λ v (3.43)

From the m-th component of the secular equation, we have

λ cos(φ0 + ψm) (3.44)

= 〈J〉
M∑
n=1

βn cos(ψm − ψn) cos(φ0 + ψn)

= 〈J〉
[
cos(φ0 + ψm)

M∑
n=1

βn cos2(φ0 + ψn) +
1

2
sin(φ0 + ψm)

M∑
n=1

βn sin 2(φ0 + ψn)

]
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Therefore, we have the condition

M∑
n=1

βn sin 2(φ0 + ψn) = 0. (3.45)

There are two solutions,

φ0 = −1

2
arctan

(∑
n βn sin 2ψn∑
n βn cos 2ψn

)
(3.46)

and φ0 + π
2
, that lead to two different eigenvectors. The two eigenvalues are

λ± =
1

2
〈J〉
[

M∑
n=1

βn ±
M∑
n=1

βn cos 2(φ0 + ψn)

]
(3.47)

=
1

2
〈J〉


 M∑

n=1

βn ±

√√√√(∑
n

βn cos 2ψn

)2

+

(∑
n

βn sin 2ψn

)2



Note that the eigenvalues usually grow with the number of BPMs used. The corre-

sponding normalized eigenvectors are




v+ = 1√
λ+

{√〈J〉βm cos(φ0 + ψm) , m = 1, · · · ,M
}

v− = 1√
λ−

{√〈J〉βm sin(φ0 + ψm) , m = 1, · · · ,M
} (3.48)

These two modes are obviously orthogonal according to Eq.(3.45). Furthermore, the

beta function expression in Eq.(3.40) can be confirmed.

The normalized temporal vectors can be worked out as




u+ =
{√

2Jp

P 〈J〉 sin(φp − φ0) , p = 1, · · · , P
}

u− =
{√

2Jp

P 〈J〉 cos(φp − φ0) , p = 1, · · · , P
} (3.49)

which clearly relates to the often used normalized coordinates! Note that the orthog-

onality of these two vectors holds for P → ∞. In other words, for finite P , these
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expressions are only approximate. So is Eq. (3.41).

In summary, the SVD of the BPM data matrix is given by

1√
P
B = σ+u+v

T
+ + σ−u−vT− (3.50)

where the singular values σ+ =
√
λ+ and σ− =

√
λ−; the spatial and temporal singu-

lar vectors are the column vectors given by Eqs. (3.48) and (3.49). Remarkably, the

SVD yields the well-known normalized coordinates for this 1-D dynamical system.

3.14 Remarks

I have discussed the general theory of Model-Independent Analysis. My focus was

on the spatial pattern analysis since no one has explored that before.10 However,

it is obvious that many well-established temporal (time-series) analysis techniques

can be applied as well, both before and after the analysis described in this chapter.

Combination of temporal and spatial analyses will extend the capability of MIA. For

example, Fourier analysis can be applied to the raw BPM data in order to filter out

noise at certain frequency, and/or to the resultant temporal pattern of a physical

mode in order to study the frequency spectrum of that mode. Note that, it is usually

necessary to collect a large amount of consecutive turn/pulse data for a large number

of BPMs in order to perform both spatial and temporal pattern analysis. This is a

demanding requirement for the data acquisition system.10

As statistical analysis methods, MIA can be applied to not only the BPM data

but also various other types of data. For example, the beam position data from a

button-type BPM are usually derived from the difference signals picked up at four

buttons. However, the sum signal could provide the current information. Analyzing

the current signals may locate where large beam loss occurs. It might be informative

also to analyze the raw button signals. (However, note that, the difference signals

are usually much cleaner than both the sum signals and the raw button signals.)

10Also, when I did the SLC studies, I could not collect a sufficient number of consecutive pulses,
which is a practical reason that I did not pursue extensive temporal analyses.
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Furthermore, although I have focused on the analysis of single particle dynamics,

MIA can be used to study many other types of beam dynamics issues such as single

(even multi) bunch collective effects, and beam-beam interactions. Of course, each

MIA application may have unique features to be explored and understood. Lately

researchers at KEK have started to study multi-bunch problems by using the bunch

index as the BPM index and the longitudinal bunch displacements as the BPM data.

Some interesting results have been obtained.[15]



Chapter 4

MIA applications to linacs—SLC

example

In this chapter, I describe several MIA experiments carried out on the Stanford Lin-

ear Collider (SLC)1 and some related simulation studies. Although the experimental

results are preliminary in both quantity and quality due to the limited machine time

available, they are very promising and most of them are unprecedented. The exper-

imental results presented in this chapter are more a proof-of-principle for MIA than

a systematic study of SLC.[45, 46]

4.1 Simulation studies

Many simulation studies were carried out during the development of MIA methods

described in the last chapter. Some of them have been discussed in previous sections.

In this section I present two more sets of simulation results obtained for SLC. One

summarizes the effort to evaluate the significance of various physical effects (e.g.

incoming beam position jitter, current jitter, structure misalignments) on the beam

centroid dynamics. The other is an MIA done for a simulated data set based on

1Only the first one-third of the linac was used in my study because at that time the data acquisi-
tion system limited the number of BPMs one can use for buffered data acquisition—collecting large
number of consecutive beam pulses simultaneously at selected BPMs.

61
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the SLC linac configuration. The computer program[16] used in the simulations

calculates the first order optics as well as the effects of the linac longitudinal and

dipole wakefields.

To estimate the magnitude of various physical effects on the beam orbit f , the first

and second order orbit deviations (∂qf and ∂q1∂q2f) are computed via the simplest

difference equations

fq =
1

2
[f(∆q) − f(−∆q)]

fq1q2 =
1

4
[f(∆q1,∆q2) − f(−∆q1,∆q2) − f(∆q1,−∆q2) + f(−∆q1,−∆q2)]

which are easy to carry out and sufficiently accurate because the perturbations are

small. The perturbed beam orbits are computed numerically and these difference

equations are used to compute the associated spatial patterns, which (except for those

related to the incoming phase φinj and energy δ variations) are shown as solid lines

in Fig. 4.3. (This figure is mainly for another purpose, but can be used here.) These

patterns correspond to incoming beam position and angle variations ∆x0 = 15µm

and ∆x′0 = 3.3µrad; 10% beam current jitter ∆I; 10% bunch length jitter ∆σz;

0.5◦ incoming longitudinal phase jitter ∆φinj, etc. which are close to the size of

the fluctuations observed in the SLC linac. The lattice used was the standard linac

lattice except for two 300 µm structure misalignments at BPM 70 and 100. Table 4.1

gives the rms amplitude of the corresponding physical patterns as obtained by the

computer program. The important messages from Table 4.1 are: 1) except for the

betatron oscillations, all other orbit perturbations are on the order of a few µm—well

below the nominal 10 µm BPM resolutions (this was a major factor that motivated

MIA development); 2) the second order perturbations are also significant.

In order to understand the MIA results of the SLC, and in particular, to study the

effect of structure misalignments, a system was generated to simulate certain aspects

of the SLC experiments. In addition to the standard linac lattice model, the system

consists of:

• two 300 µm structure misalignments at BPM 70 and 100,
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• initial betatron motions of ∆x = 15µm, ∆x′ = 3.3µrad,

• a 10% current jitter (nominal number of particles per bunch N = 4 × 1010),

• a 10% bunch length jitter (nominal bunch length σz = 1.2 mm),

• 50% correlations among x-x′, x-I, I-σz, and

• a total of 125 BPMs with resolutions 10 µm except for the first seven 1 µm

BPMs.

Using the computer program, a total of 5000 pulses are randomly generated and

tracked along the linac through all the 125 BPMs.

Fig. 4.1 shows the degrees-of-freedom analysis of the simulated SLC linac system

according to the method described in Section 3.6. As marked in the figure, the

degrees-of-freedom analysis yields the major characteristics of the system such as the

1 and 10 µm noise floors; the continuous growing betatron modes; the location of the

first structure misalignment; and the degrees of freedom due to wakefields.

The top two curves are dominated by the betatron motion and thus are marked

as betatron modes. The apparent linear growth is due to 1) the increase of the beta-

function along the beam line and 2) a significant mixing with other modes because

of the 50% correlations between betatron motion and current variation.

The modes due to wakefields are particularly interesting. There is a weak signal

arising well before the first structure misalignment and becoming significant after

BPM 40. It is a mode due to 2nd order perturbations such as ∂2
xI b(m), i.e. the change

of betatron motion because of current jitter. Such a mode requires both betatron and

current variations: the betatron oscillation causes the beam to move off the centers

Sources ∆x0 ∆x′0 ∆I ∆σz ∆φinj ∆δ0
∆x0∆I,
∆x′0∆I

∆x0∆σz,
∆x′0∆σz

∆x0∆φinj,
∆x′0∆φinj

Effects 21.4 12.5 2.5 3.4 1.7 < 1 1.7 3.8 2.5

Table 4.1: Estimate of beam orbit variation magnitude (in µm) due to various physical
perturbations. Done for the first one-third of SLC linac with two 300 µm structure
misalignments.
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of acceleration structures and thus generate wakefields, and the current jitter leads

to an independent variation of the beam orbits due to the wakefields. At BPM 70, a

new degree of freedom clearly appears, which is a betatron oscillation excited by the

wakefield kicks of the 300 µm structure misalignment—a 1st order perturbation due

to ∂Ib(m). Note that there are only one degree of freedom associated with the term

∂Ib(m) no matter how many structures are misaligned. However, as we will see later,

individual structure misalignment can be revealed by a kick analysis of the vector

∂Ib(m).

Fig. 4.2 plots the first 7 of the 125 spatial vectors of an SVD analysis of the simu-

lated system. The singular values are given in µm on the vertical labels. There are 5

significant spatial patterns above the noise. However, unlike the degrees-of-freedom

plot, these orthogonal spatial vectors do not show much of the spatial characteristics

of the system, although the 6th and 7th vectors indicate much lower noise for the

first 7 BPMs.

Fig. 4.3 gives the vectors extracted via all the temporal patterns (x, x′, I, σz
and their second order combinations) by using the methods described in Section 3.7.

The corresponding temporal-pattern labels are shown on the left-hand-side of each

spatial pattern. The solid lines are the exact spatial patterns and the dots are the

extracted patterns from the simulated BPM data. The two agree well. Frames such

as fx2 , fxx′ , and fσ2
z

indicate the fitting errors, which are sub-micron levels. These

physical bases, much more meaningful than the orthogonal basis in Fig. 4.2, clearly

show the characteristics of the system and the underlying physics. In fact, some of the

interpretation of the above degrees-of-freedom plot are based on the understanding

of these physical bases. The physics has been discussed above. Note that the vectors

depending on current and those depending on bunch length are very similar and

therefore may not be well-separated in a degrees-of-freedom analysis. This is the

reason that there are only 5 significant spatial patterns in Fig. 4.2.

Figs. 4.2 and 4.3 show the orthogonal and physical basis. Although the orthogonal

basis is much less meaningful than the physical basis, to obtain it, one requires only

the BPM data. Section 3.8 described a method to approach the physical base de-

composition with BPM-data only. The idea is to require that the spatial bases reflect
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the information obtained from the degrees-of-freedom analysis. Fig. 4.4 illustrates

the process of applying such an idea to the simulated SLC data. The 1st sub-plot

shows a degrees-of-freedom analysis of the whole beam line, which is the same as

Fig. 4.1. The shaded area is up to the 7-th BPM, where only two betatron modes

exist. An SVD of this subset of the BPM-data matrix was performed and the first

two temporal singular vectors u1 and u2 were used as the betatron temporal patterns.

(In fact, BPMs up to the 30-th may be used to determine the betatron temporal pat-

terns since nothing shows up before that. However, the first 7 BPMs yield a better

signal-to-noise ratio because of their high resolutions.) The residual matrix with the

“betatron” motion removed can be computed via the procedure in Section 3.8. The

2nd sub-plot shows the residual degrees of freedom. The shaded area is up to BPM 45,

where the leading mode is much stronger than the rest. This boundary is somewhat

arbitrary. The criterion for the boundary was to contain only one degree of freedom

(if there are two or more degrees of freedom that can not be separated, one has to

include all of them) and use as many BPMs as possible to enhance the separation

between the dominant degree of freedom and the next one. This subset (the first 45

BPMs) of the 1st residual BPM-data matrix is SVD analyzed and the first temporal

singular vector is used as another temporal pattern u3 for the whole beam line. At

this stage, three temporal patterns have been chosen. Removing these 3 modes we

obtain the 2nd residual matrix, whose degrees-of-freedom analysis is shown in the 3rd

sub-plot, from which it is obvious that the first 70 BPMs (the shaded area) should

be chosen. Again, an SVD yields another temporal pattern u4. The next residual

degrees of freedom are plotted in the last sub-plot, where only one mode left. An

SVD of the whole residual matrix gives the last temporal pattern u5.

Using these 5 temporal patterns, a new decomposition of the BPM-data matrix

can be obtained. The corresponding spatial patterns are shown in Fig. 4.5. The

label fui
means that the spatial pattern is corresponding to the temporal pattern

ui mentioned above. Comparing to the orthogonal basis shown in Fig. 4.2, these

new spatial patterns are much closer to the physical basis, although still only the

BPM data have been used. For example, the pattern fu5 in Fig. 4.5 has the same

characteristics as the current and bunch-length patterns (fI and fσz) in Fig. 4.3, but
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none of the orthogonal patterns in Fig. 4.2 does. Moreover, the patterns fu3 and fu4

in Fig. 4.5 resemble the 2nd order physical patterns in Fig. 4.3.

However, due to the lack of information, the spatial patterns (fu’s) may not be

the same as the physical patterns. The dots in the first two sub-plots of Fig. 4.5 are

the results of fitting the spatial patterns to exact betatron orbits (by using the first

7 BPMs to find the best fit). As expected, they are very close. The errors are shown

in Fig. 4.6. We see a small amount of mixing with other modes, because the betatron

and the current variations (x-I) are correlated in the simulated system.

A kick analysis of these patterns is plotted in Fig. 4.7, in which the first two

spatial patterns in Fig. 4.5 are used as the betatron bases. (They are not the exact

betatron bases but very close to the exact ones and can be obtained from the BPM

data alone.) The first two sub-plots of Fig. 4.7 are zeros because their spatial patterns

are used as the betatron bases for the kick analysis. The kick analysis of fu3 and fu4

shows basically small random kicks. Some of them may be wakefield kicks and others

are due to noise. In any case, they are small and there are no significant kicks.2

The kick analysis of the spatial pattern fu5 is most interesting. It shows clearly the

two wakefield kicks due to the two 300 µm structure misalignments (via current and

bunch-length variations). Since the beam energy is higher at the position of the 2nd

structure misalignment, the effect of the misalignment is weaker than the first one.

In a real situation, one may need further experiments to identify the physical sources

of the measured spatial and kick patterns.

The above analysis demonstrates many features of MIA. We see that MIA can tell

a great deal about an accelerator system from BPM data alone. It is even better when

the temporal patterns of physical variations are available and used in combination

with the BPM data. The ability to reveal the two 300 µm structure misalignments

from BPM data alone is particularly remarkable.

The decomposition shown in Fig. 4.5 is based on analysis of spatial characteristics

of the system. In case the temporal patterns of the system have certain known

characteristics, one can take them into account and further improve the analysis via

2The first kick in fu3 seems significant but there is no physical reason for it. This is because
the denominator of Eq. (3.32) became very small and thus noise was enhanced significantly. Using
Eq. (3.33) with more BPMs will reduce such problems.
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Fourier analysis and so on. For example, one may perform degrees-of-freedom analysis

with increasing number of pulses (instead of BPMs as shown before) and see whether

new degrees of freedom appear. The point is that one should incorporate as much

information as possible in MIA.

4.2 Measurement of BPM resolutions

In Chapter 3 I discussed the characteristics of the noise floor, focusing on the general

properties of the singular value spectrum and noise reduction, although I did mention

that the noise floor usually approaches the BPM resolution distribution and therefore

provides a good measure of the BPM system. This section shows a few more experi-

mental results from the SLC, focusing on the measurement of BPM performance.

As shown in Fig. 3.2, particularly noisy BPMs can be identified in the spatial

singular vectors of an SVD analysis. The corresponding singular values (times
√
M)

yield the resolutions of those BPMs. Usually such noisy BPMs are removed from the

BPM data before further MIA analysis.

From the noise floor of the singular value spectrum in Fig. 3.1, the average and

spread of BPM resolutions can be estimated, which characterize the overall perfor-

mance of the BPM system for beam dynamics observations. Remember that Figs. 3.2

and 3.1 are experimental results from the SLC and represent the actual performance

of SLC BPM system.

The noise floor characterizes the BPM system as a whole. Usually there is no

correspondence between a noise floor singular value and a BPM resolution. If the

resolution of an individual BPM is needed, one can set the signal singular values to

zeros and re-multiply the SVD matrices as in the noise-cut procedure. The resultant

BPM-data matrix is mainly the random noise due to the BPM resolutions. Thus

computing the standard deviation of each BPM column yields an estimate of individ-

ual BPM resolution. The top frame of Fig. 4.8 plots the result of such an exercise for

SLC data. There are two kinds of dots representing the BPM resolutions estimated

from two different data sets. The results repeat rather well. Around BPM 50 and 95

there are three BPMs that have very small values. Those are the very noisy BPMs
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whose variations have been removed when the large singular values are zeroed. Thus

they do not represent those BPM resolutions. The two BPMs marked by the dash-

lines yield completely different results for the two sets of data because they are at

the boundary of the noise floors. Thus it happened that they were removed from the

noise floor in one data set but not from the other. Such BPMs can be identified from

the spatial singular vectors.

To compare the BPM resolutions with the singular value noise floor, BPM resolu-

tions are reordered into decreasing sequence and plotted as solid dots in the bottom

frame of Fig. 4.8. The circles are the singular values (not normalized by
√
M). As ex-

pected, the noise floor agrees with the BPM-resolution distribution fairly well except

for the beginning part. Due to the existence of signals, instead of being compared

with the singular value right above, the largest BPM resolution should be compared

with the beginning value of the noise floor as indicated by the dash-line. (The light

dots show the effect of moving the BPM-resolution distribution to match the noise

floor.) Obviously, small coherent signals may cause the difference between the BPM

resolutions and the noise floor. The beginning part of the noise floor tends to be

larger than the actual BPM resolutions while the end part tends to be smaller due

to the very nature of SVD—the larger singular values claim all linearly correlated

variations even though the correlations are accidental.

The major errors in the BPM resolution estimate usually occur from the boundary

area where signals and noise are hardly distinguishable. One may speculate on some

improvement by using certain window functions (as is usually done in a Fourier analy-

sis) that provide smoother weighting transitions between signals and noise. However,

more research is needed on this subject.

4.3 Measurement of betatron bases and corrector

jitter effects

In both high energy linacs and rings, the transverse beam dynamics is usually domi-

nated by the betatron motions, which are characterized by the physical patterns that
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I call “betatron bases”. Any betatron orbit is a linear combination of the 2 betatron

bases. Note that betatron bases may not be single-particle trajectories, especially

when the beam current is high; instead they are the linear part of the beam orbit

responses to initial transverse position and angle variations (i.e. ∂x~b and ∂x′~b at nom-

inal beam conditions). In order to find the single-particle betatron bases, the beam

current has to be sufficient low.

A good measurement of the betatron bases (especially the single-particle ones)

is important for the understanding of beam optics. It is even more important for

studying various subtle beam dynamics effects since the betatron oscillations often

have to be removed from the data in order to observe the weak signals buried in the

oscillation data. There are two major difficulties in an accurate measurement of the

betatron bases: 1) insufficient BPM resolutions, and 2) separating betatron motions

from other perturbations. MIA is meant to overcome such difficulties.

There are three methods to obtain the betatron bases with improving accuracy.

The first method, the roughest one, is using the spatial vectors of the leading singular

values as the betatron bases. Since the betatron oscillations dominate the motions,

the singular vectors may provide a good estimate of the betatron bases. However,

other spatial patterns will certainly be mixed into the “betatron patterns”.

The second method is to determine the temporal patterns of the initial transverse

variables such as x0 and x′0 by using a clean linear section of the beam line, and

then project out the corresponding betatron patterns via Eq. (3.18). This method

is usually better than the singular vectors. However, since the measured temporal

patterns may contain variations due to other perturbations, the obtained betatron

patterns may still be mixed with other modes. For example, if the variations of the

initial beam position x0 is influenced by the variations of beam bunch length, then its

temporal pattern is correlated with the bunch-length variations, which will mix the

bunch-length vector into the betatron bases IF such correlations are not taken into

account.

The first two method observe the beam passively and both are likely to suffer

from having non-betatron motions mixed into the betatron bases. The third method,

which is the most reliable one, excites independent betatron oscillations with weak
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corrector dithering (strength modulations) and then extracts the spatial betatron re-

sponse pattern by using the temporal dither pattern and Eq. (3.18). When carefully

delivered, such a dither pattern will be uncorrelated with any other variations of the

system, and therefore provides a betatron base without any mixing. Note that the

dithering correctors must be carefully chosen in order to generate completely uncor-

related perturbations. For example, if the corrector location has non-zero dispersion,

then the effective betatron perturbations could be correlated with the beam energy

oscillations.

Fig. 4.9 demonstrates the determination of a betatron pattern of a section of SLC

linac by using the 1st and 3rd methods above. Firstly, a large betatron oscillation

(∼ 200µm rms amplitude) was excited by dithering a corrector in the linac with

a given temporal pattern. 8000 pulses at 125 BPMs were collected in about 20

minutes. (Due to the limitation of the SLC data acquisition system, these pulses were

collected as 40 blocks of 200 consecutive pulses.) SVD of the BPM-data matrix yields

a dominate mode whose spatial and temporal vectors have been shown in Fig. 3.3.

The temporal pattern is the same as the corrector-dither pattern. The spatial pattern

gives the betatron response pattern to the corrector kick. This spatial pattern is

plotted as a solid line (the breaks are due to removal of dead and very-noisy BPMs)

in each sub-plot of Fig. 4.9 in order to compare with other measurement results.

The amplitude is arbitrarily scaled. Subsequently, the corrector dither strength was

reduced to 1
4
, 1

20
, and 1

50
of the original value and 8000 pulses were collected for each

strength. Using the corrector dither pattern alone, the betatron patterns for each data

set are extracted via Eq. (3.18) and plotted as dots in Fig. 4.9. For comparison, their

amplitudes are scaled accordingly. We see in the bottom frame that even when the

perturbation magnitude is reduced to 4 µm (200/50), the extracted betatron pattern

is still very accurate. In the weak perturbation case, SVD vectors show nothing that

resemble the particular betatron pattern. (See Fig. 4.12 in Section 4.5 for the first

7 vectors.) Nonetheless, as shown in Fig. 4.10, a degrees-of-freedom analysis does

yields some clue about the existence of a new degree of freedom (marked by the gray

dots) starting right after the dithered corrector. The strips in the figure are due to

dead and noisy BPMs.
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4.4 Measurement of transverse wakefield effect

A beam, when passing through a misaligned accelerator structure, will excite trans-

verse wakefields that kick different parts of the beam by different amounts and there-

fore blow up the beam emittance. Such a wakefield effect can be a major source of

luminosity degradation in a linear collider.[57] To counteract such effects in the SLC

linac, various methods [58, 31] have been used for the detection and correction of such

wakefield effects. However, it is very difficult to measure such transverse wakefield

effects due to the weakness of the signals and the difficulty of separating such effects

from other sources of perturbation. The current (or bunch length) dependency of

the wakefield effects can be used to separate the wakefield effects from other effects.

One idea is to measure the orbit at different beam currents and then calculate the

difference. Unfortunately, such measurements are unlikely to succeed. One reason

is the limited resolution in the orbit measurements. More importantly, when the

beam current is changed, many other beam parameters (as well as the orbit) will

be changed also. Similarly, bunch length changes have been used, but with limited

success. To illustrate this problem, Table 4.2 shows the correlations between current

(bunch length) change and the beam parameters that we are able to monitor in the

linac of SLC. The data are based on 5000 electron pulses collected under normal run-

ning conditions. Clearly, such correlations have to be taken into account in order to

measure the wakefield effects correctly.

MIA provides a novel approach to solve these problems because (1) it allows one

current ∆I bunch length σz
horizontal position x −0.17 −0.52
horizontal angle x′ −0.03 −0.15
vertical position y −0.08 0.01
vertical angle y′ 0.10 0.20
long. beam phase −0.48 −0.20
beam energy −0.37 −0.18
bunch length −0.05 1
beam current 1 −0.05

Table 4.2: Correlation coefficients of beam current and bunch length with other beam
parameters measured in the SLC
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to go below the resolution limit set by the individual BPMs and thus observe the

beam dynamics at a much finer level, and (2) it takes all known signal correlations

into account to generate a physical base decomposition. MIA was applied to the

measurement of the transverse wakefield effect at the SLC and encouraging results

were obtained.

At the SLC, in addition to the beam transverse position, beam current, bunch

length, incoming beam (longitudinal) phase, and relative beam energy can be moni-

tored on a pulse-by-pulse basis. Other signals such as klystron phases along the linac

have not been used in the present analysis. As shown in Table 4.2, there are signifi-

cant correlations among these signals, especially for the wakefield sensitive variables.

MIA takes all known correlations into account, and therefore should provide a bet-

ter measurement of the wakefield effects. To investigate this, a 5 corrector, 1.2mm,

local bump in the linac of SLC was generated and its wakefield effect was measured

via MIA. During the experiment, the linac was running under normal operating con-

ditions except for the absence of the positron beam. BPMs from the beginning to

about the 1/3 point of the linac (LI02–LI13) were used. Three sets of 5000 pulses

were collected under the conditions: (a) before the bump was applied, (b) while it was

applied, and (c) after the bump was removed. Each set of data took a few minutes

to collect.

MIA was applied to all sets of data and then the vectors corresponding to the

current jitter (i.e. the “current vectors”) were compared. The results in the vertical

measurement are shown in Fig. 4.11 (all ordinate units are in µm). The top frame

shows the current vectors of conditions a and c, which are the wakefield effects due

to misalignments (and corrector offsets, etc.) in the normal running machine. To

test that a current vector indeed corresponds to the wakefield effects, the next two

frames show the measurement of wakefield effects due to a corrector bump. The

middle frame plots the differences of the averaged beam orbits. The solid line is the

difference between conditions b and a, while the dots are between conditions b and c.

The two curves are the same, which indicates that the beam orbit is under control.

The corrector bump is clearly visible (although it is not well closed). The bottom

frame shows the difference of current vectors. The dots are the difference between b
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and a, while the crosses are between b and c. The solid curve shows the calculated

(NOT just a fit!) wakefield effect due to the bump. We see that the agreements are

fairly good, especially when considering the fact that the BPM resolution is about

10 µm, which is as large as the signals. Furthermore, no external beam perturbation

was used, and the signal is based on a rather weak 1.3% natural current jitter. As

far as I know, such an accurate transverse wakefield effect measurement in a linac are

unprecedented. Note that the errors are on the order of a few microns, which is much

larger than the statistical limit. Therefore, it is still possible to further improve both

measurement and analysis. This test demonstrates that the current vectors obtained

via Eq.(3.17) are correct. An immediate application of such current vectors is the

detection of structure misalignments and confirmation of wakefield calculations.

A similar analysis in x was performed. However, one set of results agrees with

the calculation while another has much larger deviations. The discrepancy in the

horizontal cases may be due to some unknown jitter sources that are correlated with

the current. These experiments were repeated several weeks later and similar results

were obtained in both the vertical and horizontal planes. Unfortunately, the limited

machine time prevented us from a thorough investigation, especially of the horizontal

results.

The measurement results are still preliminary; nonetheless, they are very encour-

aging. Since such measurements need not perturb the beam, they are non-invasive

to normal machine operation and in principle can be done parasitically and quickly

after the method matures. On the other hand, intentionally introduced larger cur-

rent variation will improve the sensitivity to the misalignments. This method can

potentially become a powerful tool for finding structure misalignments.

4.5 Repeatability/stability of SLC measurements

Repeatability of MIA results for SLC measurements was checked even though there

was insufficient machine time for a systematic study. Repeatability reflects the sta-

bility of the machine and provides a basic check for MIA methods. Let me summarize

the previously shown experimental results before presenting a couple more.
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• Fig. 3.7 shows the repeatability of the average levels of noise floors.

• Fig. 4.8 shows the repeatability of BPM resolutions measurements.

• Fig. 4.9 shows the repeatability of a corrector dither pattern measurements.

• Fig. 4.11 shows the repeatability of transverse-wakefield-effect measurements.

As discussed in Section 3.4, for a stable system, the singular values and the spatial

singular vectors should be repeatable for different BPM data sets. However, the

SLC linac is such a complicated system that various changes frequently occur. For

example, klystrons phases are constantly changing and some klystrons might even

drop off from time to time; feedback-corrector strengths are constantly changed to

stabilize the beam orbit. Therefore, the singular values and vectors may or may not

be stable. To check this, two BPM-data sets of 5000 pulses each are used to evaluate

the repeatability of the singular values and vectors. These two data sets are the first

and last data sets collected over about an hour period. Each data set took a few

minutes to collect. Fig. 4.12 shows the first 7 spatial vectors of both data sets. The

solid lines are for the first one and the dots for the last one. The singular values are

shown accordingly on the left-hand-side labels.

From Fig. 4.12 we see that the singular values and vectors (of signals, not those

of noise) are generally repeatable as expected. It is remarkable that there are signals

stable to the µm level! Thus the dynamics of the linac may not (as often thought)

be overwhelmed by noise (fluctuations) at this level. Sometimes, changes could occur

even for the major patterns, which indicates that the system was varying. The most

likely cause is the variation of the sample distributions of the initial beam conditions

(i.e. QTQ). Of course, the linac configurations/parameters (i.e. the physical basis F )

could also vary during data collection. However, even when there are large perturba-

tion sources causing the leading spatial patterns to change, there are still repeatable

patterns at the micron level.
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4.6 Existence of unknown degrees of freedom

From the MIA of SLC data, we established the experimental fact that there are un-

known degrees of freedom in the SLC linac that are significant for the beam dynamics.

The most solid evidence is the degrees-of-freedom analysis such as Fig. 4.10. Clearly

there are at least 8 degrees of freedom in this (first one third) linac section during

the time the data was taken. Some of them we know (e.g. two due to betatron

motion, one due to the weak corrector dither described at the end of Section 4.3),

but most of them we do not know. At a different time, the degrees-of-freedom plot

may change considerably (see Fig. 3.5 for another plot); however, there are always

degrees-of-freedom whose physical sources are not clear.

To actually figure out all the degrees of freedom means that we understand the

beam dynamics and the machine to the micron level (for SLC linac)! MIA provides a

powerful tool to face such a challenge, yet to accomplish this difficult task requires lots

of hard work and investment in machine time to investigate the perturbation sources.

Unfortunately I did not have sufficient machine time to systematically investigate the

SLC linac and understand its dynamics completely.
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Figure 4.1: Degrees-of-freedom analysis of a simulated SLC linac system with two
structure misalignments.
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Figure 4.2: Spatial vectors of SVD analysis of a simulated SLC linac system.
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Figure 4.3: Spatial vectors extracted via temporal patterns (x, x′, I, σz and their 2nd
order combinations as labeled on the left-hand-side) of a simulated SLC linac system.
(To be continued.)
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Figure 4.4: Degrees-of-freedom analysis at various stages of a spatial analysis of a
simulated SLC linac system.
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Figure 4.5: Spatial vectors extracted via temporal patterns based on spatial analysis
of a simulated SLC linac system. Dots are fit to ideal betatron orbits. (See Fig. 4.6
for the difference.)
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Figure 4.7: Kick analysis of the spatial patterns in Fig. 4.5. Instead of the exact
betatron bases, the first two spatial patterns in Fig. 4.5 are used in this kick analysis.
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strength.



CHAPTER 4. MIA APPLICATIONS TO LINACS—SLC EXAMPLE 86

0 20 40 60 80 100 120
0

20

40

60

80

100

120

140

M

si
ng

ul
ar

 v
al

ue
s 

(
m

)

Figure 4.10: Degrees-of-freedom analysis of SLC linac with a corrector dithered, which
results in a betatron oscillation of 4 µm rms amplitude.
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Chapter 5

Possibility to measure nonlinear

(1-turn) Taylor maps of a circular

accelerator

5.1 Introduction

It is well known that the beam dynamics in accelerator systems is intrinsically non-

linear. In circular accelerators nonlinearity is one of the major factors that limits

stability and influences dynamics of halos. In this chapter, I focus on the beam dy-

namics issues in electron storage rings. In addition to the large effort invested into the

design of an accelerator to control nonlinearities, it is essential to determine nonlinear-

ities in the “as-built” machine in order to understand and improve its performance. A

standard way to characterize the single particle beam dynamics in a periodic system

is via the Poincaré section map M in phase space. For any initial phase-space point

X i, the map M gives the new phase-space vector Xf after one turn.

M : X i → Xf (5.1)

89
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Of the several ways to represent the map M, I use the map representation in terms

of Taylor series:

Xf
k = X0

k +RklX
i
l + TklmX

i
lX

i
m + UklmpX

i
lX

i
mX

i
p + VklmpqX

i
lX

i
mX

i
pX

i
q + · · · (5.2)

where the summation convention on the repeated indices is assumed. Xk is the k-th

component of a phase-space vector. If the closed orbit is chosen as the coordinate

origin, X0
k = 0. Determination of the map is equivalent to the determination of the

coefficients X0, R, T , U , etc.

There are many kinds of single particle beam dynamics experiments, which roughly

fall into two categories. One is oriented toward lattice-diagnostics. In this case, the

accelerator is in a normal operation condition and the nonlinearity is weak. Only the

linear transfer matrix R and its relation to the designed lattice and various errors

in the system are pursued.[28, 18] No successful measurements of high order coef-

ficients have been reported1, although some nonlinear quantities such as tune-shift-

with-amplitude coefficients have been measured.[69] The other kind of experiment is

to study the nonlinear beam dynamics by introducing significant nonlinear pertur-

bations into the system via external fields or driving the beam to certain nonlinear

resonances.[26, 53, 27] In such cases, the nonlinear effects are significantly enhanced

or even dominate the beam motion. Although such experiments are interesting, they

provide limited information on the dynamics of an accelerator in its normal operation

mode.

In this chapter, I will show that it appears possible to measure the nonlinear (1-

turn) Taylor map of a normal machine to a high order and accuracy using presently

available high resolution beam position monitors. There are many issues concerning

the map measurement. They can be grouped as:

1. physical effects influencing the one-turn map,

• single-particle map vs. beam-centroid map (5.3)

• wake field effects (5.4)

1M. Lee informed us of his unsuccessful attempt to fit some 2nd order coefficients at SPEAR.
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• radiation damping and quantum excitation (5.5)

• stability of the map in the presence of power supply ripples, temperature

fluctuations, ground motion, etc. (5.5)

2. measurement of the map (5.2), and

• number of data pairs to be measured and time required to collect (5.2)

• number of kickers required to explore the complete phase space (5.2)

• number of turns that can be used for data collection after kicks (5.2,3,4)

• effect of BPM resolution and nonlinearity (5.7)

• beam energy resolution and control of beam energy (5.2,5.7)

3. extraction of map coefficients by fitting (5.2),

• extracting the single-particle map from the beam-centroid map (5.3)

• map order to be used and convergence of fitting (5.6)

• error estimate and hypothesis test (5.8)

• advantages and drawbacks in breaking down the dimension of fitting (5.8)

Numbers in the brackets indicate the section in which the topic is addressed. I will

first describe how to implement the experiment and reasons behind it, then address

key issues that may affect such experiments. Simulation results will be presented.

5.2 Experiment implementation and map extrac-

tion method

The map M can be specified by a data set consisting of vector pairs {X i, Xf} which

are the initial and final phase-space positions. X i must cover the phase-space region

of interest. In the approximate Taylor map representation, M is parameterized by

its power series coefficients. We can measure the map as data pairs and then convert

them into a Taylor representation by fitting. The reason to work with the Taylor map
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is that the fitting problem is linear, although there is a well known drawback that the

Taylor map is not necessarily symplectic in general and requires significantly more

parameters than necessary. Also, as will be addressed later, we actually measure the

beam-centroid map, which may not be symplectic.

The measurement is straightforward, which requires a large number (much more

than the number of parameters to be determined) of data pairs of sufficient accuracy

(to be addressed later). They can be collected in many ways. In the following, I

describe a general approach to illustrate the major considerations. For a particular

ring, one may need to work around some instrument limitations by taking advantage

of certain unique features of the ring.

To sample a certain phase space volume, fast kickers are required to kick the beam

to various positions in phase space. After the beam is kicked, its turn-by-turn phase-

space positions are recorded. Due to the beam decoherence etc., discussed later, a

limited number of turns may be used after each kick. The beam needs to be fully

damped to the equilibrium orbit before the next kick to sample other phase-space

points. This process can be repeated to obtain the required number of data pairs.

In addition to tracking the beam centroid motion, we need to know the equilibrium

emittances and energy spread in order to correct for the difference between the beam-

centroid map and the single-particle map. See Section 5.3 for details.

Due to the short damping time in an electron machine, thousands of data pairs

can be collected in one hour. For example, the PEP-II low-energy ring’s horizontal

damping time is τx = 40 ms. If one assumes measuring each data pair takes about

10τx (i.e. only one turn is observed for each kick), 9000 data pairs can be collected

within an hour. If 10 turn data after a kick can be used, 90,000 data pairs can be

collected each hour. In practice, the data collection speed may be limited by the time

for the kickers to recover, or reading data from BPM digitizers.

Ideally two kickers are required in each plane to sample both coordinate and

momentum. However, one can use just one kicker in each plane and use many turns of

data to sample various coordinates, provided that the beam decoherence is negligible

during those turns. Generally, injection kickers can provide the necessary kicks in one

and only one plane. To generate kicks in the other plane may require a new kicker
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in many rings. Special care is necessary to arrange the x and y kicks as well as the

number of turns to be used. In some rings, it may be possible to sample the phase

space by steering the injected beam. In such a case, one needs to evaluate whether the

variation in the phase-space distribution of the injected bunches can yield significant

errors due to decoherence. Moreover, the fluctuation of the injected currents may

affect the accuracy of BPM readings.

Position and momentum can be determined with a minimum of two BPMs assum-

ing the nonlinearity between the BPMs is negligible. This assumption should be a

very good approximation because the distance between neighboring BPMs is usually

short compared to the circumference of the accelerator. Moreover, one can always

choose a location where the nonlinearity is not likely to be a concern. To measure the

full transverse phase space, two BPMs are required in each plane. The BPMs must be

sufficiently fast to measure the turn-by-turn trajectory. The accuracy of position and

momentum measurements is critical and a large part of this dissertation is devoted

to improving it. See Chapters 2 and 6 for more extensive discussions.

In order to study the energy dependency of a map, the beam energy can be changed

by varying the RF frequency of the accelerating field[30]. The relative energy changes

can be deduced via

∆ωRF
ωRF

= −(
∆C

C
− ∆v

v
) = −(αc − 1

γ2
)δ +O(δ2) (5.3)

where αc is the linear momentum compaction factor of the ring and γ is the beam

energy. Often a stored beam has undamped synchrotron oscillations due to noise in

the RF system, etc. In case such energy variation is not negligible, the turn-by-turn

beam energy has to be measured and taken into account in map fitting. I will discuss

energy resolution in Section 5.7.

The fitting procedure is the standard least-squares fitting, which will be illustrated

via a 2D phase space {x, p} example. The map to be fitted is

{
xf = x0 +R11x+R12p+ T111x

2 + T112xp+ T122p
2 + · · ·

pf = p0 +R21x+R22p+ T211x
2 + T212xp+ T222p

2 + · · · (5.4)
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Assume there are n terms in each series and a total of m data pairs {(xi, pi) →
(xfi , p

f
i ), i = 1 → m}. Then the x component of the map may be written as

~xfm×1 = Am×nCn×1 (5.5)

where
~xf = [xf1 , x

f
2 , · · · , xfm]T ,

A =




1 x1 p1 x2
1 x1p1 p2

1 · · ·
1 x2 p2 x2

2 x2p2 p2
2 · · ·

...
...

...
...

...
...

...

1 xm pm x2
m xmpm p2

m · · ·


 ,

C = [x0, R11, R12, T111, T112, T122, · · · , n-th coefficient ]T

Since the vector ~xf and design matrix A are determined by the measured data,

we have a set of linear equations for the map coefficients C. Because the data contain

errors, which will be addressed later, it is better to have m� n so that the equations

are over-determined and look for the solution Ĉ which makes the norm ‖ ~xf − A Ĉ‖
minimum. (This is just the least-squares fitting method if the Euclidean norm is

used.)[40, 51] The solution reads

Ĉ = A+ ~xf = (ATA)−1AT ~xf (5.6)

where A+ is the pseudo-inverse (Moore-Penrose inverse) of the rectangular matrix

A and AT is the transpose of A. The second expression can be used in the case

ATA is not singular, otherwise more involved but standard mathematical routines

are required. The same procedure holds for the other map component, i.e. ~pf . More

discussions on fitting and error estimates will be presented in the following sections.

A very nice feature in one-turn map measurement is that all the measurement

errors of transverse phase space are limited to the four BPMs, and BPMs are steadily

improving in quality[14, 7]. The accuracy of the kickers do not play a role in the

experiment as long as they are sufficiently fast. This is because the kickers are used

to kick the beam to the neighborhood of a phase space point, while the exact beam
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position is measured by the BPMs. However, besides BPM accuracy, there are many

beam dynamics issues that may limit our ability to measure the single-particle map.

I will address these issues in the following sections.

The analysis presented later are based on simulations which use the SLAC/PEP-

II design parameters[5]. A 9-th order Taylor map of the low-energy ring (LER ring)

in dynamical variables (x, Px, y, Py, δ) is used to model the single particle dynamics.

The map has been used in the stability studies of the ring. Higher order (> 9) terms

have no significant effects on beam dynamic aperture. To simulate the experiment,

a large set of data pairs sampling the 5D phase space are generated randomly (or

in grids). In addition, random errors are added to simulate the BPM and energy

resolutions. If not specified, the number of data pairs used for fitting studies is 10

times the number of coefficients to be fit (i.e. m/n = 10), other ratios are studied

in Section 5.8. For simplicity, all fittings are done in 5D phase space simultaneously.

Fitting results presented in this chapter are only for the x component of the map.

Results for other components are similar and, have the same design matrix A.

5.3 Single-particle map vs. beam-centroid map

Although the goal is to measure the single-particle map, the signals are from a bunch

of particles. This may cause two kinds of problems. One is of dynamical origin–the

collective effects. The other is of kinematic origin–the decoherence problem, which

will exist even though all the interactions among the particles are negligible. This is

because the BPM measures the centroid motion of a beam while particles in the beam

may have significantly different motions. A well-known example is the decoherence

of a kicked beam, in which the centroid motion can be damped to zero although each

particle’s motion has not yet been damped.[72, 44, 55]

Neglecting collective effects, every particle in a beam follows the same single-

particle map. Therefore, the beam centroid X̄ follows
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X̄f
k = [X0

k + T̂klm〈δX i
l δX

i
m〉 + Ûklmp〈δX i

l δX
i
mδX

i
p〉 + V̂klmpq〈δX i

l δX
i
mδX

i
pδX

i
q〉 + · · · ]

+X̄ i
l [Rkl + Ûklmp〈δX i

mδX
i
p〉 + V̂klmpq〈δX i

mδX
i
pδX

i
q〉 + · · · ]

+X̄ i
l X̄

i
m[Tklm + V̂klmpq〈δX i

pδX
i
q〉 + · · · ]

+X̄ i
l X̄

i
mX̄

i
p[Uklmp + · · · ] (5.7)

+X̄ i
l X̄

i
mX̄

i
pX̄

i
q[Vklmpq + · · · ]

+ · · ·
≡ X̄0

k + R̄klX̄
i
l + T̄klmX̄

i
l X̄

i
m + ŪklmpX̄

i
l X̄

i
mX̄

i
p + V̄klmpqX̄

i
l X̄

i
mX̄

i
pX̄

i
q + · · ·

where 〈· · · 〉 means average over the beam phase space distribution of X i (assumed

symmetric) and δX = X− X̄ is a particle’s deviation from the centroid.2 The hatted

coefficients are related to the unhatted ones by constant factors
∏

i

(
n(i)
m(i)

)
, where (nm)

is the binomial coefficient and, n(i) and m(i) are the number of i among the running

indices in the coefficients and in the 〈· · · 〉 terms respectively.3 Note that permutations

of the running indices are assumed not to contribute in Eqs. (5.2) and (5.7). It is

clear that the beam centroid does not follow the single-particle map. Extra terms

appear and depend on the beam phase-space distribution. The difference between

the centroid map and single-particle map decreases with the beam emittance. The

two maps are the same if the nonlinearity is negligible.

It is important to realize that, as long as the beam maintains the same distribu-

tion, the coefficients X̄0, R̄, T̄ , Ū , etc. are constant, i.e. the beam centroid follows a

well-defined Taylor map also, although this centroid map is different from the single-

particle map. This observation allows one to overcome the single particle vs. beam

problem, but imposes a strong condition on the experiment: for each measurement

2For Gaussian distribution with 〈δX〉 = 0, it is well known that 〈δXpδXq〉 = σ2
pq = σpσqρpq,

where ρpq is the covariance matrix. And 〈δXn
p 〉 =

{
0 n odd
(n− 1)!!σn

p n even
3It is not important to understand these factors. Nonetheless, here is an example to help. In 5D,

the index i runs from 1 to 5. The term Û1224〈δXi
2δX

i
4〉 in X̄i

l Û1lmp〈δXi
mδX

i
p〉 of Eq.(5.7) should

read:
Û1224〈δXi

2δX
i
4〉 = (00)(

2
1)(

0
0)(

1
1)(

0
0)U1224〈δXi

2δX
i
4〉 = 2U1224〈δXi

2δX
i
4〉.
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the beam must have the same phase-space distribution. In an electron storage ring,

radiation damping can accomplish this condition, by damping the beam to the equi-

librium state before each kick. The kick is assumed to move the beam centroid but

does not significantly change the distributions relative to the centroid. Therefore, the

same (equilibrium) phase-space distribution can be achieved for each measurement.

In proton machines, it may be more difficult to control the phase-space distribution.

The centroid map is changing after the beam is kicked due to filamentation of the

phase-space distribution, limiting the number of turns which can be used. However,

it should be safe to assume that the centroid map will not change significantly in a

few turns, because the tune spread due to tune shift with amplitude and chromaticity

is usually very small. The decoherence problem could be minimized by kicking a well-

damped beam and using just one-turn data. Depending on various conditions for a

particular measurement, it may be possible to use many-turn data. For the PEP-II

example, at least 20 turns may be used.

After the centroid map is determined, the single-particle map can be solved using

the information on the equilibrium beam phase space distribution. (Thus the equilib-

rium emittances and energy spread information is needed.) Note that the 0-th order

term may appear in the centroid map even though X0 = 0, which means that the

closed orbit observed with BPMs is different from the closed orbit of the single-particle

map and a coordinate translation may be necessary to obtain the single-particle map.

Another important issue is that the centroid map is not symplectic in general, even

though the single-particle map always is. Therefore, one has to be careful when trying

to use symplecticity in fitting.

Notice that the corrections to the nonlinear coefficients are due to the coefficients

which are at least two orders higher, assuming symmetric distributions. Therefore,

the corrections are normally small for a well damped beam, which makes it much

easier to extract the single-particle map. Moreover, the leading low order terms tend

to dominate the corrections—which is the reason that Table 5.1 shows approximate

linear dependency on beam emittance and square of energy spread. Taking the PEP-

II low energy ring as an example, the maximum corrections at each order are shown

in Table 5.1. The first two columns indicate the emittance and energy spread used
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emitt. δ spread x̄0 orders
in ε0 in σδ in µm 1-st 2-nd 3-rd 4-th 5-th 6-th 7-th

0 1 1.03 2.60 7.3 11.9 18.9 16.6 23.4 24.5
1 1 0.66 2.66 9.9 11.7 19.4 16.9 25.2 25.0
2 1 0.25 2.72 12.4 11.6 20.0 17.3 27.3 25.5
4 1 -0.60 2.78 17.3 11.1 20.7 17.7 30.9 26.0
9 1 -2.50 3.24 29.8 10.0 22.7 19.0 39.4 27.1
0 2 4.13 9.66 25.7 41.6 68.9 60.3 93.0 97.2

Table 5.1: Maximum absolute corrections (×103 except for x̄0) of coefficients in cen-
troid maps with increasing beam emittance and energy spread for the PEP-II low-
energy ring.

for the calculation. ε0 and σδ stand for the design emittance and energy spread of

the ring. An uncorrelated 5D Gaussian distribution is used. The 0-th order terms

are in µm, while others are the maximum corrections in 10−3 (for 10σ normalized

coefficients4 ). These may be compared with typical fitting errors shown in Table 5.2.

Table 5.1 shows that, the 0-th order terms are negligible although non-zero. The

corrections are fairly small in linear terms but become significant in the nonlinear

terms. However, only a few terms such as δPx, δ
2x, δ3Px, δ

4x, δ2Pxx
2, etc. actually

have significant changes. The corrections are dominated by the beam energy spread

and not sensitive to the emittance growth. Therefore, it should not be difficult to

fulfill the requirement of having exactly the same beam emittance for each kick during

the measurement. Also the beam emittance and energy spread need not be known

very accurately in order to get sufficiently good correction.

Before moving on to the next topic, I would like to point out that, compared to the

technique of harmonic analysis of multi-turn data, the map measurement described

here has the advantage of being free from problems due to beam decoherence, because

the harmonic analysis requires a relatively large number of consecutive turns, while

the map measurement can use just a few turns after each kick.

4For convenience, I normalize all dynamical variables to their 10σ values of the beam distribution,
so that all map coefficients become dimensionless and their values reflect the relative importance of
the corresponding terms near the border of the dynamical aperture.
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5.4 Wake field effects

In addition to the dynamics described by the single-particle map, a particle in a beam

experiences wake field forces due to collective effects. To measure the map, such wake

field effects must be limited or procedures developed to correct its effects during map

extraction. The best method to reduce collective effects is to reduce the beam current.

However BPM resolution may decrease also. Therefore, beam current will need to be

optimized for the best map measurement.

To estimate the wake field effects, I calculate the kicks on the beam centroid when

a Gaussian bunch passes one turn of the ring. Assuming the betatron and synchrotron

motions are uncoupled, the change of beam centroid due to wake forces is given by

[71, 25, 41]

∆δ =
〈 ~̄ ‖F 〉
E

and ∆~p⊥ =
〈 ~̄ ⊥F 〉
E

(5.8)

where E is the beam energy; 〈· · · 〉 means average over the bunch distribution; the top

¯means integrated longitudinally over the wake structure. The average longitudinal

and transverse impacts on the centroid are:

〈 ~̄ ‖F 〉 = − 1

N

∞∑
m=0

|Im|2 k(m)
l

〈 ~̄ ⊥F 〉 =
1

N

∞∑
m=0

m(<[Im−1I
∗
m]x̂−=[Im−1I

∗
m]ŷ) k

(m)
⊥ (5.9)

where N is the number of particles in the bunch, Im is the m-th moment of a Gaussian

beam given by [71]

Im = Ne

[m
2

]∑
n=0

(2n− 1)!!(m2n)(xc + i yc)
m−2n(σ2

x − σ2
y + i 2ρσxσy)

n. (5.10)

where xc and yc are the beam centroid position, and ρ is the correlation coefficient of

the x and y distributions. k
(m)
l and k

(m)
⊥ in Eq. (5.9) are the energy loss factor and
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transverse kick factor respectively for the multipole mode m, which are defined by

k
(m)
l ≡

∫ ∞

0

dω

π
|ρ̃‖(ω)|2 <[Z‖

m(ω)]

k
(m)
⊥ ≡ −

∫ ∞

0

dω

π
|ρ̃‖(ω)|2 =[Z⊥

m(ω)] (5.11)

where ρ̃‖ is the Fourier transform of the longitudinal bunch distribution and Zm is

the impedance of the ring. The loss factor and kick factor are usually available for

the longitudinal monopole mode and transverse dipole mode, because they are the

dominating modes for a near-axis beam. The following scaling provides a useful

estimate for higher modes:[25]

Z‖
m ∼ 2

b2m
Z

‖
0 and Z⊥

m ∼ 1

b2m−2
Z⊥

1 , (5.12)

where b is the pipe radius.

In map measurements, we are interested in large amplitude motions with xc � σx

and yc � σy. Therefore Im is dominated by the n = 0 term (xc+ i yc)
m, which means

the bunch acts like a macro particle. With the impedance estimates in Eq.(5.12), we

get

∆δ ∼ −Nre
γ
k

(0)
l

[
1 + 2

∞∑
m=1

(
rc
b

)2m

]
= −Nre

γ
k

(0)
l

1 + ( rc
b
)2

1 − ( rc
b
)2

(5.13)

and

∆~p⊥ ∼ Nre
γ
k

(1)
⊥ (xcx̂+ ycŷ)

∞∑
m=1

m(
rc
b

)2m−2

=
Nre
γ
k

(1)
⊥ (xcx̂+ ycŷ)

[
1 − (

rc
b

)2
]−2

(5.14)

where re is electron’s classical radius and γ is the beam energy. k
(0)
l and k

(1)
⊥ are the

loss factor and kick factor for the lowest multipole modes. Fig. 5.1 is a plot of the

nonlinear factors in Eqs. (5.13) and (5.14). Note that, the high order contributions

become significant when the beam is close to the pipe. Beam displacements within

50% of the pipe radius (i.e. rc = 0.5b) are in a comfortable range, and 80% should
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Figure 5.1: Nonlinear factors in the longitudinal and transverse (solid and dashed
curves) wakefield kicks

be the upper limit. The nonlinear factors in ∆δ and ∆~p⊥ are about the same within

this range. Eq.(5.14) can be viewed as a thin kick map. Normalizing the dynamical

variables to 10σ, we get roughly the same map coefficient for all orders, which reads

kw ≡ Nre
γ
k

(1)
⊥ (

10σx
10σp

) =
Nre
γ
k

(1)
⊥ β̄ (5.15)

where β̄ is the average beta value of the ring. kw provides a convenient way to estimate

the significance of the wake effects.

For PEP-II LER, the design wake has k
(1)
⊥ ' 200V/pC m in c.g.s. units.[41] For a 3

GeV, 1010 electron bunch, and β̄ ' 10m, we get kw ' 10−3. As a nonlinear coefficient,

it is negligible; but for the linear map, such a perturbation is larger than the expected

linear coefficient resolution (see Table 5.3) in map extraction. Thus we should be

able to see its effect on the linear map (e.g. linear tune-shift). But such small
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linear perturbations will not change significantly the nonlinear map coefficients due

to “feed-up” with nonlinear coefficients. For the longitudinal wake, k
(0)
l ' 10V/pC,

hence the effect on the beam energy is negligible. Therefore, wake field effects on map

measurements are tolerable for the LER. Nonetheless, in general, wake fields may be a

physical factor limiting map measurements, and specially designed low-current-high-

resolution BPMs may be necessary for some rings. In experiments, one can identify

wake effects by making measurements at different beam currents.

Since the wake effects may be observable in map measurements, methods to ex-

tract such effects should be pursued. In general, the wake field effects can not be

characterized by one-turn maps since the interaction depends on the beam phase-

space distribution and the history of the beam trajectory, which are time dependent.

However, in map measurements the phase-space distribution can be considered the

same for each one-turn pair measurement, and there is almost no multi-pass wake

effects when just one-turn data are used. Therefore it is reasonable to characterize

the wake effects by one-turn kicks given above. In such a case, we can measure maps

at different currents and extrapolate to zero current. Such corrections should signif-

icantly reduce wake problems. Although locally the wake force depends linearly on

beam current, it may show up nonlinearly in a one-turn map because of a coupling

with lattice nonlinearities. However, such coupling should be fairly small and the

linear dependence on current is expected to dominate.

In summary, wake fields may limit map measurements. kw of Eq.(5.15) and the

energy loss of Eq.(5.13) can be used to estimate the significance of wake field effects.

In case it is not negligible, linear extrapolation to zero current can help to extract wake

effects. However, I only considered the one-turn wake force. When the impedance

of a ring is large, using multi-turn data may further complicate problems through

long-range wake effects.
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5.5 Radiation damping, quantum excitation, and

external noise

Radiation damping and quantum excitation are well-known physical processes that

affect single-particle dynamics. When a particle passes through horizontal bending

magnets, energy is lost due to radiation, vertical action is conserved, and horizontal

action is increased. However, when the particle makes up the energy loss in the RF

system, actions in both directions are damped.[64] The relative action change reads
∆A2

A2 = 2 τ0
τx

, i.e. the betatron amplitude change is ∆A
A

= τ0
τx

, where τ0 is the revolution

period and τx the transverse damping time. This number is very small in general.

Therefore, unless BPM resolution is better than 10σx
∆A
A

(assuming maximum kick is

10σ), radiation damping effects should be negligible. For the PEP-II LER, τ0
τx

' 10−4

and σx ' 1mm, which yields an orbit change of 1µm. Since the radiation damping

could be taken into account in the one-turn map calculation, it is in any case not a

fundamental limit to map measurements.

Due to the quantum nature of the radiation process, the smooth radiation damp-

ing picture could be modified by quantum excitations. To estimate the probable

magnitude of a betatron amplitude fluctuation in a turn, I use the fact that beam

emittance is determined by the balance of radiation damping and quantum excitation.

Thus the expected action growth in one turn is ∆A2 = 2 τ0
τx
σ2
x, which is equivalent to

a rms amplitude fluctuation ∆A ' τ0
τx
σx. This should also not be a concern.

Up until now, I have discussed various physical factors concerning the existence

of a detectable single-particle map. Practically we still need to consider the stability

of such a map under external disturbances (e.g. power supply ripples, temperature

variations, ground motion) over the period of measurement. The dominant noise

spectrum due to power supply ripple consists of the power line frequency and its

harmonics, which are in the range of 100 – 1000 Hz. They are too slow to affect

the single-turn measurement, but sufficiently fast to perturb the map from sample to

sample. Due to their weak amplitude, the major effect of such high frequency noise

is tune modulation. I added random linear tune kicks in our simulation to study

the effect of such tune perturbations on map measurement, and found that of a tune
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fluctuation up to 10−3 is tolerable for LER map measurements with 10 µm BPMs. A

very rough estimate can also be done for power supply ripple effects by converting the

map coefficient variations to beam energy error via the generic dependency on B
1+δ

in

Hamiltonians. This yields ∆δ ∝ ∆B
B

∝ ∆I
I

, where B and I are the magnetic fields and

driving currents. PEP-II power supplies are regulated to better than 10−4. Taking

into account the significant damping due to transmission lines and eddy currents

in vacuum chambers[22], ∆δ should be less than the required energy resolution. In

general, power supply ripples are limited by design because they may cause emittance

growth. In case they are untolerablely large, one needs to pursue methods[21] to

suppress any tune modulation. In fact, the most serious high frequency noise will

probably come from the RF system. Turn-by-turn beam energy measurement may

help to take into account the energy variation due to noisy longitudinal beam motion.

In case there is a coupling between synchrotron and betatron motions, a noisy RF

system could limit the possibility of measuring the one-turn map.

Unlike the high frequency perturbations, very low-frequency disturbances may be

problematic. Here I am talking about diurnal temperature change[50], ground mo-

tion due to moon tides[11], etc. whose effects has been identified both in colliders for

particle physics and rings for synchrotron radiation sources. For example, SPEAR

experienced several hundred µm closed-orbit oscillations because of diurnal temper-

ature variation. Such changes may be tolerable for the machine’s operation since

control and feedback systems can be used to adjust machine performance. However,

during map measurements, no feedback should be used and the lattice should be

left alone. Therefore such very low frequency disturbances could be a problem and

should be avoided. Fortunately map measurements can be done in a relatively short

period of time. So the underlying map could be sufficiently stable. In general, such

disturbances are machine and site dependent. I will not discuss them further. In ex-

periments, one should check the stability of an unperturbed beam to identify possible

problems, and furthermore, one should check the stability of the map measurements

themselves.



CHAPTER 5. POSSIBILITY TO MEASURE NONLINEAR TAYLOR MAPS 105

5.6 Convergence of map fitting

Now consider the map fitting problem. First I discuss to which order one should fit.

A more general concern is whether a sufficiently accurate one-turn Taylor map can

be obtained to predict particle behavior after thousands or millions of turns. I will

not look into this general question here. It suffices to point out that many numerical

studies[76, 75] support the assumption that a 9-th order Taylor map is adequate for

the stability studies in an electron machine. In the LER ring example, a 9-th order

Taylor map has been used to generate tracking data and compare with the numerical

fits. Since the 9-th order is about the highest order which may have some effect on

beam dynamics, as a bottom line, a 9-th order fit map can be used. In fact, the

simulation studies show that it is possible to work with a much lower order fit map

and the fitted maps will converge to the correct one (the 9-th order tracked map)

as the fit-map order increases. The convergence of the fitted maps is a criterion to

guarantee that the correct map is obtained. (See Section 5.8 for more discussions.)

Table 5.2 shows the results of fitting simulated data to maps of increasingly higher

orders. No random errors have been added to the data pairs yet. Since there are

hundreds of coefficients with magnitudes spanning several orders, I have not shown the

fitting results for each coefficient. Instead the maximum fitting errors (|Cfit
i −Cexact

i |)
are tabulated for different orders in rows and for different fit-map orders in columns.

For reference, the maximum coefficients of the original map at various orders are also

included in the last row. Since the coefficients are for dynamical variables normalized

to 10σ, they are dimensionless. For dynamical aperture concerns, values less than

10−3 are not significant because a particle must be lost within 103 turns without

radiation damping, otherwise the growth will be damped.[23] This is why I present

absolute fitting errors instead of relative errors. We see that the fitting is consistently

improving and converges to the original map as the fit-map order increases. It also

shows that to get a map to a certain order correctly, the fit-map order had better

be 2 orders higher than the coefficient order (though in general this may be map

dependent). The important point is that a sufficiently high order map must be used

in fitting, even though only low-order terms are of interest.
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fit-map orders
order 1-st 2-nd 3-rd 4-th 5-th 6-th

1 1.7 × 10−2

2 1.5 × 10−2 4.4 × 10−2

3 1.1 × 10−3 4.6 × 10−2 2.0 × 10−2

4 5.1 × 10−4 2.7 × 10−3 2.2 × 10−2 2.6 × 10−2

5 1.2 × 10−4 1.5 × 10−3 3.4 × 10−3 2.9 × 10−2 2.4 × 10−2

6 5.5 × 10−5 1.0 × 10−4 2.2 × 10−3 2.0 × 10−3 2.4 × 10−2 4.1 × 10−2

max. coeff. 0.86 0.10 0.27 0.25 0.21 0.23

Table 5.2: Maximum absolute fitting error dependency on fit-map order. The tracked
map was 9-th order.

Now I will address the second apparent concern. For a high order map, there

are hundreds or even thousands of coefficients. How is it possible (Does it make

sense?[6]) to fit so many parameters? I have to admit that such a possibility is indeed

somewhat surprising, but the answer is affirmative. At least the method works well to

fit significant coefficients. Another question that is closely related to the convergence

problem is the domain dependency. Here, I will not address this issue in detail.

Generally speaking, the larger the phase space domain used, the higher the map

order that is required. In case only low-order map coefficients are of interest, one may

not want to kick the beam to 10σ. However, one should be aware that small beam

amplitudes will make BPM errors more significant. In experiments, it is necessary to

optimize the map order and phase space domain to be used under given conditions

such as the expected (the design) map, beam aperture, BPM resolution, etc. In

this chapter, I choose 8σ of the transverse distribution and 4σ energy distribution in

simulations. Usually, there is larger than 12σ clearance in accelerators.
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5.7 Dependency on the BPM resolution and en-

ergy resolution

Since we are trying to determine the map via a large set of data pairs, obviously

the accuracy of these data pairs determines how well the map is defined and how

well the data can be fit by a map. There are two concerns with BPMs. One is

the linearity of the BPM. Since we are measuring small nonlinear effects, the BPM

itself must be sufficiently linear or its nonlinearity must be known and extracted.

Otherwise, the measured data set will consist of the nonlinearity due to BPMs as

well as beam dynamics. I will not discuss details about BPM nonlinearity, which

should be negligible in well-calibrated BPMs[7, 65]. Note that BPM nonlinearity

which is significantly above the BPM noise level will ruin map measurements and

yield false information, while low BPM resolution will limit our ability to extract the

information. Limitations will be revealed during data analysis.

The other concern is BPM resolution, which is often limited by its signal digitizer.

Although such BPM data error often appears as uncertainty in the least-significant

bit instead of being continuously distributed, I add uniformly or Gaussian distributed

random errors to the data pairs generated with the LER map to simulate BPM

resolution effects, since the least-squares fitting is not very sensitive to the error

distribution. To fit the data (generated with a 9-th order map), I have used a 5-th

order Taylor map (instead of 9-th order) in order to show that low-order maps can

be used to fit high-order maps as long as high-order terms are weak.

BPM res. orders
in µm 1-st 2-nd 3-rd 4-th 5-th
100 5.3 × 10−3 4.4 × 10−3 1.1 × 10−1 5.0 × 10−2 4.4 × 10−1

10 2.2 × 10−4 1.1 × 10−3 5.4 × 10−3 3.6 × 10−2 2.8 × 10−2

1 4.3 × 10−5 1.6 × 10−3 2.1 × 10−3 3.7 × 10−2 3.2 × 10−2

0.1 6.7 × 10−5 1.6 × 10−3 1.6 × 10−3 3.8 × 10−2 2.9 × 10−2

Table 5.3: Maximum absolute fitting error dependency on BPM resolution. Coeffi-
cients were normalized to 10σ. Tracked map was 9-th order.
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Table 5.3 presents the simulation results with BPM resolutions of 100µm, 10µm,

1µm, and 0.1µm. We see that the possibility to extract nonlinear coefficients is

dramatically improved from 100µm to 10µm, while roughly constant for resolutions

better than 10µm. Comparing Table 5.3 to Table 5.2 shows that below 10µm, BPM

errors are not significant and fitting errors (due to the low order fit-map used) domi-

nate.

Fig. 5.2 plots the fitting errors of each coefficient for the 10µm case, which is

the hoped for PEP-II. The coefficient indices are grouped by orders with boundaries

at 5, 20, 55, 125, 251 for the 1st, 2nd, etc. orders respectively. It is exciting to
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Figure 5.2: Absolute fitting errors for 10σ normalized map coefficients up to 5-th
order
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realize that with 10µm BPM resolution, it is possible to measure the map to an

unprecedented high order and accuracy. The data in Tables 5.2 and 5.3 demonstrate

that map measurements should be capable of measuring significant nonlinearities,

which is very important for accelerator diagnosis.

Although present technology is able to reach 10µm (if not much better) BPM

resolution, few machines offer such turn-by-turn resolution at this moment because the

technology is relatively new and budget is always a concern. Therefore, for the time

being, BPM resolution is the major obstacle for map measurements. In Chapter 6,

I will show how to statistically improve phase-space measurements by using a large

number of BPMs.

In addition to BPM resolutions, energy resolution is also important. I assumed

no δ errors in Table 5.3. Dependency on beam energy resolution for the 10µm case

is tabulated in Table 5.4. In order to simulate the measurements, I used 15 equally

spaced grid points (instead of random sampling) to cover the ±4σδ range. Table 5.4

shows that, to be consistent with the 10µm BPM resolution, we need energy resolution

on the order of 5 × 10−5. This corresponds to a signal-to-noise ratio of 50, which is

much less than the requirement for transverse measurement. This is because we

have to extract nonlinear motion out of fairly linear betatron oscillation transversely,

while the linear and nonlinear dependencies on beam energy are comparable (the

LER map I am using originates in a low dispersion region). Usually it is difficult to

measure the beam energy accurately. Methods using a depolarizing resonance[10] or

synchrotron radiation[49] are sufficiently accurate, but need special instruments. A

method based on BPM measurements at high dispersion points[52] may be used to

orders
δ res. 1-st 2-nd 3-rd 4-th 5-th

6 × 10−6 1.8 × 10−4 2.2 × 10−3 4.9 × 10−3 3.8 × 10−2 5.1 × 10−2

6 × 10−5 4.9 × 10−4 1.6 × 10−3 5.7 × 10−3 3.0 × 10−2 3.8 × 10−2

3 × 10−4 9.4 × 10−4 8.8 × 10−3 3.0 × 10−3 4.6 × 10−2 2.1 × 10−1

6 × 10−4 3.7 × 10−3 2.1 × 10−3 1.0 × 10−1 3.9 × 10−2 5.3 × 10−1

Table 5.4: Maximum absolute fitting error dependency on beam energy resolution.
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measure the relative energy change, but special care is needed in order to reach the

required resolution. Factors that are typically omitted such as nonlinear dispersion

coefficients may become significant. For the LER example, the dispersion function

reads η1(1 − 1.9 × 102δ − 2.4 × 104δ2 + 6.5 × 105δ3 + 7.1 × 108δ4 + · · · ) and 4σδ

gives δmax ' 3 × 10−3, which could yield up to 60% error (here the nonlinear effect

is exaggerated by the low linear dispersion) when using only the leading term. MIA

methods developed in Chapter 3 can significantly improve turn-by-turn relative energy

measurement.

Instead of measuring the beam energy, Eq.(5.3) provides a way to change the

beam energy accurately. When the RF frequency is changed, the beam energy is

forced to change according to Eq.(5.3) due to phase stability (assuming significant

synchrotron oscillations are fully damped by radiation damping). The relative RF

frequency change resolution is better than 10−9, and a smooth approximation gives

αc ' ν−2 ' 10−3, thus the accuracy of energy change depends on the linear and

nonlinear momentum compaction factors. In general, the nonlinear momentum com-

paction factors are very weak. For the LER we have αc(1+1.6δ−45δ2 +1.4×103δ3 +

7.1×105δ4−3.2×107δ5−3.1×109δ6+· · · ). Therefore, we can drop the nonlinear part

and still get fairly good resolution. However, we have to know the linear momentum

compaction factor αc to get the energy change correctly. To get a signal-to-noise

ratio of 50, the error in αc should be less than 2%. Unfortunately, we may not know

αc sufficiently well and this may result in significant errors in the map coefficients.

Nonetheless, notice that αc is a scaling constant for the δ dimension, we still can get

useful nonlinear information even though we do not know αc exactly.

One more subtlety on beam energy is the calibration of the nominal energy. In

order to compare with the design map, an absolute energy measurement is required.

On the other hand, lattice magnetic field errors may dominate the difference between

the design and measured maps.5 Therefore it may not be necessary to know the beam

energy better than ∆Berr/B. However, better energy calibration will help to resolve

lattice (closed orbit) errors with measured maps at various locations. Note that since

5One experimental way to define the nominal beam energy is to find the energy at which the
closed orbit is centered at all sextupoles on average. This can be done by measuring the chromatic
tune shifts at various sextupole strengths.
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the closed orbits are changing with beam energy, one must use the closed orbit at

the nominal energy as a reference for all BPM readings. Also, for very high accuracy

measurements, the energy difference around the ring due to synchrotron radiation

may need to be taken into account, which is on the order of 10−4 and could result in

10−2 errors at 5-th order coefficients.

Before moving on to the next section, I present the exact (in diamond) and fitted

(in dot) map coefficients in Fig. 5.3, which is the case of 10µm BPM resolution and

6×10−5 energy resolution. Except for the large leading linear coefficient (which is well

fit), all coefficients up to 5-th order are shown in the figure. It shows that the map

fitting method is very impressive in its potential for extracting nonlinear coefficients.
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Figure 5.3: Comparison between exact (�) and fitted (•) map coefficients
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5.8 Error estimate and hypothesis test

For any measurement, it is important to obtain error estimates for the results. Besides

factors affecting the existence and stability of the single-particle map, errors are

mainly due to the BPM resolution and our hypothesis on the map order in the fitting

procedure. BPM errors show up in the vector ~xf and matrix A of Eq.(5.5). Errors in
~xf are typical in least-squares fitting problems, whose effect can be estimated by the

variance-covariance matrix [40]

V TV

m− n
(ATA)−1 (5.16)

where vector V = ~xf − A Ĉ (see Eq.5.5) and V T is its transpose. Square roots of

the diagonal elements of the covariance matrix yield estimated rms errors of map

coefficients, which are shown in Fig. 5.3 as error bars. Due to various reasons (eg.

badly conditioned matrix A, measurement errors in A, relatively low fit-map order),

the error bars given by Eq.(5.16) are not very good. A more reliable error estimate

is under investigation. The factor σ̂2 ≡ V TV/(m − n) gives an unbiased estimate of

the rms errors σ̂ in measurement of ~xf , i.e. the BPM resolution, if the design matrix

A is accurate. In our case, this is not exactly true. However, significant error bars

for all coefficients will indicate problems due to BPM resolution.

In general, this kind of error can be reduced statistically with the usual 1√
m

de-

pendency by increasing the number of data pairs m since the expectation value of

ATA is proportional to m. However, due to the errors discussed below, the accuracy

of map extraction does not depend on Eq.(5.16) any more for sufficiently large m.

Therefore, increasing the data size may be helpful only to some limited extent. Sim-

ulations presented before use a data size which is 10 times the number of coefficients

to fit. As an example, Table 5.5 shows the dependency on m for the case of 10µm

BPM resolution and a 5-th order fit map. The first column lists m/n, i.e. the number

of data pairs in units of the number of coefficients to fit.

The rms error estimate σ̂ has another important application in our case. Since

we measure a large number of data pairs over a period of time, it is possible to have
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orders
m/250 1-st 2-nd 3-rd 4-th 5-th

4 1.1 × 10−3 3.1 × 10−3 1.4 × 10−2 2.8 × 10−2 9.8 × 10−2

16 5.3 × 10−4 1.9 × 10−3 7.7 × 10−3 2.9 × 10−2 5.6 × 10−2

64 1.3 × 10−4 2.7 × 10−3 2.6 × 10−3 2.9 × 10−2 2.1 × 10−2

256 9.1 × 10−5 1.7 × 10−3 1.7 × 10−3 3.0 × 10−2 2.7 × 10−2

Table 5.5: Maximum absolute fitting error dependency on number of data pairs. The
5-th order fit map has 250 terms.

some very bad data due to accidental events. Such data could significantly reduce

fitting accuracy. One way to filter out such data is to check the fitting error of each

data pair against σ̂, and throw away data with an unreasonably large error. After

such filtering, fit the map again as necessary.

Errors in the matrix A are more complicated to evaluate because BPM errors show

up nonlinearly and their effects are map dependent. Using a perturbative approach,

the estimate of Eq.(5.16) can be improved by adding

−2 σ̂2A+ diag[AxĈ] (A+)T + A+
∑

ξ={x,Px,··· }
σ̂2
ξ diag[(AξĈ)2] (A+)T (5.17)

where Aξ characterizes the linear dependence of A on errors in ξ and can be computed

from measured data. However, I will not go into the technical details of Eq.(5.17) here.

Another possible, although primitive, way to improve the error estimate is to choose

many (they may overlap) subsets of the original data set, and obtain different fittings

of the coefficients, which indicate the possible error. In this way one gets a rough

estimate of the maximum fitting errors for the 10µm BPM resolution and 6 × 10−5

energy resolution case. We find 3.9(±2.3)× 10−4, 1.6(±0.6)× 10−3, 8.3(±5.7)× 10−3,

3.7(±0.4)× 10−2, and 4.8(±2.1)× 10−2 for the 1-st thorough 5-th orders respectively.

This method can also be used to check the consistency of the data. For example,

the data collected at the beginning and end of the whole measurement may yield

significantly different maps if there is slow (adiabatic) variation of the underlying

map due to external perturbations.
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Errors due to map-order hypothesis have been shown in Section 5.6. They are

map dependent and hard to estimate. Checking the convergence of different order fit

maps is necessary. Another potentially useful method is singular value decomposition

(SVD). By checking the magnitudes of singular values, one may determine at which

order the fitting is not sensitive to its coefficients anymore. One may attempt to use

a statistical hypothesis test also. Note that the (quasi-) symplecticity of the map

implies nonlinear constraints among the coefficients, which makes usual hypothesis

test routines inappropriate.

In the above sections, the 5D phase space was treated equally and simultaneously.

It is possible to break down the problem into lower dimensions, especially for the δ

degree of freedom since it is not changed by the map. The advantage is that the

parameter space for fitting can be reduced to many fittings in subspaces instead

of a single step fitting in 5D. This could be important since one may need to fit

thousands (2000 for 9-th order) of coefficients, which requires handling huge matrices.

It is actually more natural to work with 4+1 dimensions if synchrotron oscillation is

negligible. However, it is not expected to be significantly different in terms of fitting

results. Further studies are required to settle this issue. The possible drawback to

breaking down the dimensions is that the process of separating subspaces is likely to

be an additional error source for fitting due to unavoidable coupling, even though it

may be very weak in well tuned machines.



Chapter 6

MIA applications to rings—PEP-II

example

In this chapter I will consider the applications of MIA in rings focusing on the mea-

surement of nonlinear transformation maps. In the last chapter I argued that all

the potential physical effects such as decoherence, wakefields, etc. can be controlled

and it appears possible to measure nonlinear transformation maps with good accu-

racy. The major difficulty arises from limited BPM resolutions. However, Chapter 3

showed that MIA can reduce the BPM random noise significantly. Therefore MIA

can facilitate/accomodate nonlinear map measurements. In the following I will ex-

plore this possibility and show the details of nonlinear map measurements via MIA.

First I discuss how to accommodate general nonlinear map measurements in an MIA

analysis by viewing the map coefficients as a physical basis; then I discuss how to

significantly improve measurement accuracy of the phase-space dynamical variables,

which is crucial for map measurements; finally I present some simulation results for

the PEP-II high energy ring.[74, 73, 45]

115
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6.1 Application of MIA to nonlinear (one-turn)

map measurements

The single particle beam dynamics can be represented by the transformation map

Ma→b that maps any initial phase space point Xa at location a to a phase space

point Xb at location b. Using a Taylor map representation, Ma→b may be written as

Xb
k = Cb

k +Ra→b
kl Xa

l + T a→b
klm Xa

l X
a
m + Ua→b

klmpX
a
l X

a
mX

a
p + V a→b

klmpqX
a
l X

a
mX

a
pX

a
q + · · · (6.1)

where the summation convention on the repeated indices is assumed. Xk is the k-th

component of a phase-space vector. Cb
k is the zero-order term of the k-th component

and should vanish if the closed orbit is chosen as a reference. Ra→b, T a→b, Ua→b, and

V a→b are the usual TRANSPORT notations for the 1st, 2nd, 3rd, and 4th order map

coefficients.

Now consider BPM readings for P pulses (turns) at M BPM locations b1, b2, · · · ,
bM in a ring. Obviously we can cast the BPM-data matrix B for the horizontal plane

into a physical base decomposition via Eq.(6.1),

B = QF T (6.2)

where F consists of all coefficients in the x components of the maps as the physi-

cal basis (see Fig. 6.9 for some examples) and Q contains the corresponding initial

conditions, such as

F =



Cb1

1 Ra→b1
11 Ra→b1

12 · · · T a→b1
111 · · ·

Cb2
1 Ra→b2

11 Ra→b2
12 · · · T a→b2

111 · · ·
...

...
...

...

CbM
1 Ra→bM

11 Ra→bM
12 · · · T a→bM

111 · · ·



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and

Q =




1 xa1 pax1
· · · (xa1)

2 · · ·
1 xa2 pax2

· · · (xa2)
2 · · ·

...
...

...
...

1 xaP paxP
· · · (xaP )2 · · ·


 .

Now the constant terms, the Cb
1’s, may contain BPM offsets also. The best way to

take out such terms is to use the measured closed orbit as the reference and use

the difference orbits to construct B. It is better not to use the average orbit as the

reference because the high order terms may not average to zero and yield significant

errors, when the beam is excited to the large amplitudes necessary to measure the

high order map coefficients. On the other hand, it is possible to get a very accurate

closed orbit in a ring by averaging over a large number of turns of the unperturbed

beam. As discussed in Section 3.2, all the column vectors (linear and nonlinear terms)

in Q are linearly independent of each other.

Similarly one can construct a physical base decomposition for the vertical BPM

readings with the y components of the maps. However, to get the x′ and y′ (px and

py) components of the maps, this information would be required at each BPM. Note

that the Q matrix is the same for all components. In fact, one can stack the BPM

readings for both planes into one matrix and extend the physical base decomposition

to cover both planes.

One particularly interesting nonlinear map is the one-turn map of a ring. To

accommodate this into Eq.(6.2), F should contain the one-turn map coefficients and

B should contain the measured phase-space variables one-turn after the initial values

used in Q. Section 5.2 presents a concrete example. Note that in this case, F does not

contain any BPM patterns as in the usual MIA application. However, the Q matrix

is still the same.

Standard least-squares fitting can be used to solve Eq.(6.2) for the map coefficients.

The difficulty is to get a sufficiently accurate B and Q. The next section will focus

on the measurement of phase-space variables.
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6.2 Phase-space variable measurement and noise

reduction

To measure the weak nonlinearity present in the phase-space dynamics of a ring,

the background has to be sufficiently clean. MIA provides a nice way to check this

requirement. First obtain a BPM-data matrix BP×M by recording a large number

(e.g. P = 5000) of turn-by-turn data at all available BPMs (e.g. M = 150) with the

stored beam unperturbed. Then check the singular value spectrum of B. Ideally it

should contain only the BPM noise floor, since all physical motions should be well

damped. Noisy BPMs can be easily identified at this stage. Any other significant

modes indicate systematic BPM errors and/or physical sources exciting the beam.

Such problems need to be fixed in order to pursue nonlinear map measurements. I

assume the singular value spectrum is clean. We should take the average orbit as the

reference orbit and identify the noise level for later use.

Now measure another BPM-data matrix with large (e.g. 8σ) betatron oscillations

excited by fast kickers for example. Subtract the mentioned reference orbit from

each measured orbit in order to get rid of BPM offsets and define the expansion

points of the measured maps. At this stage, two MIA procedures can be employed to

improve the phase-space dynamics measurement: SVD noise reduction (Section 3.5)

and degrees-of-freedom analysis (Section 3.6).

To reduce the random noise, compute a Singular Value Decomposition (SVD)

as B = USV T , and identify the noise floor or use the noise level mentioned above.

Set the corresponding noise singular values to zeroes, and then re-multiply these

matrices to construct a noise-cut matrix B. This simple procedure can reduce the

BPM random noise by a factor of
√

d
M

, where d is the number of remaining singular

values above the noise floor. Depending on the situation, such noise reduction could

be rather significant, especially when the BPM resolution is poor and one is struggling

to measure a few leading nonlinear coefficients.

Further improvement of phase-space-variable measurement is still possible by us-

ing a well-chosen BPM subset. (This is the BPMs used to compute the phase-space

variables in Q after the above noise-cut, not the BPMs for the noise-cut.) A seemingly
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enticing thought is to use all available BPMs instead of only a few ones in a linear

section of the ring. The idea is to obtain accurate linear maps first by using small

amplitude oscillations, and then use them to fit each trajectory including those with

large oscillations to get the corresponding beam parameters. This should have the

statistical benefit of 1√
M

while the nonlinear effects were hoped to be negligible in this

process. Unfortunately, such a scheme will not work well because the nonlinear effects

are indeed significant. There is a way to salvage this scheme: instead of using all the

BPMs, one can select those BPMs that suffer only small nonlinear effects. However,

careful selection of BPMs is necessary in order to gain the statistical benefit and avoid

the nonlinearity problem at the same time. It is best to choose a beam line section

that has many BPMs and very weak nonlinearity. Simulation studies can be helpful

in choosing the right BPMs.

Although the design lattice can be used as a guide to avoid major nonlinearities,

judgement based on observation is important. How can one tell where the nonlinearity

is negligible before the nonlinear coefficients are measured? The degrees-of-freedom

analysis can help locate the best linear section in a ring for phase-space-variable

measurements. The criteria can be imposed that only the two betatron degrees of

freedom should exist and the other modes be below the noise floor. Note that in a

usual degrees-of-freedom plot, the degrees of freedom always increase with the number

of BPMs used. If a linear section exists after some nonlinear sections instead of at

the beginning of the beam line, it would appear that there were not just betatron

modes in the linear section. However, the singular values of all the non-betatron

modes will not increase in a linear section. One has to be careful when examining

a degrees-of-freedom plot, and sometimes it is better to look at the increments of

singular values.

The measurement process can be separated into two parts: 1) measure a full set of

independent orbits to the best possible accuracy; 2) determine the desired phase-space

variables x, x′, etc. from the measured independent orbits. In another word, one is to

establish a basis (such as the orthogonal basis from SVD) so that the dynamics can

be accurately described, the other is to connect that basis to the desired “physical”

basis (such as x and x′) so that the dynamics can be better understood and compared
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with models. Step 1 can be achieved without any model, while Step 2 has to rely

on some extra model dependent knowledge. The noise reduction methods discussed

above work for the first step. Conventionally these two steps are mixed together,

thus errors due to a poor model and errors due to noise are confused. However, it is

useful to separate these two types of errors, because the second one is often somewhat

artificial. In principle, one can use the orthogonal linear modes as the phase-space

variables. However, it is probably better to use a model (e.g. the design R matrix

between two BPMs) of the mentioned linear section to define the phase-space variables

from orbit measurements. Note that even if the linear machine model might not be

sufficiently accurate, it will not affect the sensitivity of nonlinear map measurement.

It is like using a pair of glasses which is perfectly clear but may generate a little bit

distortion.

I have outlined the procedure to measure beam phase-space dynamics via MIA

and methods to compute various nonlinear maps of a ring. The following section

presents some simulation studies.

6.3 Simulations for PEP-II high energy ring

Simulations for the PEP-II high energy ring have been carried out to investigate the

feasibility of nonlinear map measurements. 5000 turn data at all BPMs (147 for each

plane) were generated by tracking 200 turns of 25 randomly chosen x and y initial

conditions within a 10σ range. (For simplicity, there is no energy change; however the

procedure and results should be similar.) Figure 6.1 shows the major 2D subspaces

of the 4D phase-space samples used in the simulations. In addition, various levels of

random noise were added in order to test the sensitivity of the map measurement and

the effects of noise reduction described in Section 6.2. BPM resolutions are randomly

selected from the specified ranges.

Fig. 6.2 shows the singular value spectra of the simulated system. The insertions

show the full scale for both planes. Linear coupling and nonlinear modes are orders of

magnitude weaker than the two dominant betatron modes—the reason nonlinear map

measurements are challenging. The main frame shows the tail part of the x spectra
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in detail. Circles are signals only, dots are 100 ± 20µm BPM noise only, and crosses

are signals with noise. Note that the noise floor is about 10 µm, much lower than

the individual BPM resolutions—the statistical benefit. Otherwise, all the nonlinear

signals would be below the 100 µm noise level. The arrow indicates where to cut off

the noise floor.

Before focusing on the measurements of phase-space variables and nonlinear maps,

let us check out the spatial vectors of SVD analysis. The results for the x BPMs are

plotted in Fig. 6.3, where the first 14 vectors are plotted. The labels on the left show

the corresponding singular values in µm. These vectors should be compared with the

map coefficients shown in Fig. 6.9. We can see that some of the dominant features

show up in the SVD analysis. However, as we addressed in Chapter 3, the orthogonal

basis obtained from SVD is not meant to be the same as physical basis.

Table 6.1 shows the rms errors of dynamical variable measurements for various

BPM resolutions and the effects of noise-cut. Figure 6.4 plots these data with linear

fits. Despite noticeable fluctuations, the accuracy of phase-space measurements is

significantly improved. Here only two BPMs are used to compute the phase-space

variables from the SVD noise-cut data.

To investigate the possibility of improving measurement accuracy by using more

BPMs in fitting, Fig. 6.5 shows the errors due to nonlinearity. In this study, there

is no BPM noise. The top frame plots the initial x values of the 5000 pulses used

in the simulation. The other frames plot the errors of the fitted x obtained by using

the exact linear transfer maps and various number of BPMs as indicated in the figure

caption. The errors clearly correspond to the amplitudes of the oscillations and are

BPM reso- without noise-cut with noise-cut
lutions (µm) x(µm) x′(µr) y y′ x x′ y y′

100±20 102 7.1 156 14. 36. 2.6 25. 2.1
80±16 74. 6.4 126 11. 17. 2.1 24. 2.0
60±12 55. 4.9 103 9.3 12. 2.4 20. 1.8
40±8 30. 2.3 56. 5.1 8.2 1.2 14. 1.3
20±4 20. 1.7 30. 3.4 10. 1.1 11. 1.3

Table 6.1: rms errors of phase-space-variable measurements for various BPM resolu-
tions with and without SVD noist-cut.
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not symmetrically distributed. Except the cases using BPMs within the first 10,

the rms magnitude of the nonlinear errors is over 20 µm, which is quite significant.

The amplitude dependency of the errors is probably more detrimental than the same

amplitude random noise. In addition to the cases shown, many other BPM selections

are tested and the results are similar to using all BPMs. This study demonstrates the

shortcoming of using a large number of BPMs to compute the phase-space variables.

In general, errors due to nonlinearity are not negligible.

Fig. 6.6 repeats the above study but with 100± 20µm BPM noise. As hoped, the

random noise levels are considerably reduced when a large number of BPMs are used.

However, the nonlinear errors prevent us from taking advantage of such statistical

benefits. The last case is an exception, where the first 10 BPMs are used and there is

not much nonlinearity. In this case, a factor of
√

10 can be gained. Fig. 6.7 continues

this study by applying a noise-cut. The improvement is obvious. The highlights of the

above noise reduction methods are shown in Table 6.2, which clearly demonstrates

the statistical ability to reduce the random noise, which can make nonlinear map

measurements feasible without stringent BPM resolution requirements, especially in

rings with a very large number of BPMs. Let us summarize what can be learned from

the results shown in Figs. 6.5–6.7:

• SVD noise reduction is generally applicable and effective as long as the number

of BPMs is much larger than the number of significant nonlinear modes.

• If the exact linear transfer maps are known, the improvement of using a large

number of BPMs to fit the phase-space variables is significant, even after SVD

noise reduction. However, nonlinearity and the accuracy of the linear maps may

limit the applicability of this method.

Method used no reduction SVD only many BPMs only both methods
Shown in frame Fig. 6.6 , #2 Fig. 6.5 , #2 Fig. 6.6 , #6 Fig. 6.5 , #6
rms noise level 102 µm 36 µm 30 µm 17 µm

Table 6.2: Summary of phase-space measurement improvement via noise reduction.
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• Nonlinear errors are generally not negligible. Nonetheless, it may be possible to

take advantage of both noise-reduction methods and still avoid nonlinear errors.

For this purpose, a subset of BPMs must be carefully selected.

As shown above, it is important to choose a linear section of a ring for the phase-

space-variable measurements, especially when wishing to improve resolution and avoid

the nonlinear errors at the same time. To find a good linear lattice section for phase-

space measurement, a degrees-of-freedom analysis can be employed. Fig. 6.8 shows

such analysis for the simulated data with 100 µm BPM noise. The two betatron

modes clearly dominate in both planes. The big jump of the singular values at the

center is due to the large beta function close to the interaction point. The blow-ups

in the bottom frames show the modes due to nonlinearity. We see that the beginning

10 BPMs are in a fairly linear region, where nothing shows up above the 100 µm noise

floor except the two betatron modes. That is why this section can be used to improve

measurement accuracy as shown above. The section around BPM 50 is fairly linear

in x but not in y.

Fig. 6.9 plots the linear and a few nonlinear map coefficients along all the BPMs.

They are normalized to the 10σ of phase-space variables, thus reflecting the strength

of each nonlinear term near the border of dynamical aperture. The apparent non-

sinusoidal (amplitude
√

1 + α2
0) patterns in R11 and R12 are due to the uneven BPM

locations. The peaks in the 2nd order coefficients are due to the main sextupoles

around the interaction point at the center. Such spatial patterns form the physical

bases for the BPM readings. Simulation results are also shown for the case of 100

µm BPM resolutions, with and without noise-cut, on top of the exact solid curves.

Although the main features can be obtained even without a noise-cut, the accuracy is

significantly improved by the noise-cut, which is crucial. Note that the linear coupling

terms R13 and R14 can be obtained rather accurately. Such information can be used

to calculate the global linear coupling coefficient and furthermore help to localize the

coupling sources. The errors in T113 are due to the weakness of this nonlinear coupling

term.

Fig. 6.10 plots the results of simulated one-turn map measurement with 100 µm

BPM resolution. Again the effect of noise-cut is obvious. The accuracy is sufficient
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to reveal useful nonlinearity information. For example, a few percent of the main

sextupole strength error should be detectable according to the simulations.
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Figure 6.1: Subspaces of the 4D phase-space samples used in the simulations
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Figure 6.2: Singular value spectra of simulated data with “◦” for signal only, “·” for
100±20µm BPM noise only, and “+” for both. Insertions show the full vertical scale.
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Figure 6.3: Spatial singular vectors of simulated data with 100 ± 20µm BPM noise.
Vertical labels are the singular value indices and the singular values in µm. (To be
continued.)
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Figure 6.3: Continued.
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Figure 6.4: rms errors of phase-space-variable measurements with various BPM res-
olutions. “+” and “◦” are without and with noise-cut respectively. Lines are linear
fits.
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Figure 6.5: Nonlinear effect in phase-space-variable measurement. No BPM noise and
exact linear maps are used. All vertical units are in µm. Frame #1 is the exact initial
x values; #2 is the error of using the first 2 BPMs to fit x; #3 using all BPMs; #4
using all BPMs except 34 and 87 which seat on the peaks of the 2nd order coefficients;
#5 using 63 BPMs that have small 2nd order coefficients; #6 using the first 10 BPMs,
where the nonlinearity is rather weak. The rms values in µm for each case are listed
on the vertical labels. The nonlinear effect is clear and significant. (See Fig. 6.9 for
the distribution of major nonlinearity.)
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Figure 6.6: Nonlinear effect in phase-space-variable measurement with BPM noise.
Similar to Fig. 6.5 except 100±20 µm BPM noise are added and no noise-cut is used.
Note that when a large number of BPMs is used, the random noise are dramatically
reduced and the nonlinearity errors become dominate.
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Figure 6.7: Various effects in phase-space-variable measurement. Similar to Fig. 6.5
except 100±20 µm BPM noise are added and noise-cut is used. Note that, in the
last frame, the combination of cut-noise and using many BPMs in the fitting can
reduce the BPM random noise effect by a factor of 6 (a factor of 2 better than the
cut-noise only case in Frame #2) while the nonlinear effect is still small. However,
careful section of BPMs is clearly necessary to avoid nonlinear errors.
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Figure 6.8: Degrees-of-freedom analysis of simulated 5000 turn x and y BPM data
with 100± 20µm noise. The top frames show the dominating two betatron modes in
each plane; the bottom frames are blow-ups to show the other degrees of freedom.
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terms are shown. (To be continued.)
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Chapter 7

Conclusions

Novel beam dynamics analysis methods (under the general title Model-Independent

Analysis–MIA) have been developed in this dissertation. This approach has been

shown to be applicable to both linacs and rings. MIA provides a method to analyze

beam dynamics without resorting to any particular machine model. The main fea-

ture of MIA is a systematic statistical analysis of a BPM-data matrix. By taking

advantage of correlations among a large number of BPM readings, one can easily

identify problematic BPMs and significantly reduce the effects of BPM random noise.

The degrees-of-freedom analysis of a beam line provides valuable information about

potential jitter sources that may be due to unknown physics or malfunctioning ma-

chine components. The physical base decomposition of a noise-reduced data matrix

via measurable physical variables can be used to extract various physical patterns

with greatly enhanced sensitivity. In some cases this information is impossible to

obtain with other known techniques. Further analysis (such as kick analysis) of the

spatial physical patterns can facilitate the interpretation of the results. Conventional

spectrum analysis (such as Fourier analysis) can be applied to the temporal physical

patterns as usual and further enhance the understanding of beam dynamics. There-

fore we believe that MIA can significantly advance beam observation and dynamics

analysis and lead to better control of a beam.

In summary, my vision is that the foundation of MIA (and nonlinear map mea-

surements) has been firmly established and preliminary experimental applications
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were successful. The described methods will mature as more experimental studies

are completed. Eventually they will be used in routine machine operations. Be-

cause it is simple and operationally non-invasive, MIA (or parts of) will be widely

used for beam dynamics analysis and machine control, even though its title could be

forgotten.1 The SVD noise reduction is particularly important (could be essential)

for addressing the beam observation and control challenges arising in future machines

(such as the Next Generation Linear Collider–NLC[4], the Linac-based Coherent Light

Source–LCLS[3]), where hundreds even thousands of BPMs are available and beam

control requirements are extremely tight. Furthermore, MIA can be very useful in

the situation that a machine changes so often that a good machine model is hard to

maintain. Many new interesting applications, especially for the collective effects and

the beam-beam interaction, are bound to appear because of the improvement in the

observation sensitivity and the unique power of examining physical modes spatially

and temporally at the same time. In terms of further development of MIA, three

obvious directions can be pursued: 1) general statistical analysis studies; 2) devel-

opment of systematic methods to build a machine model based on MIA results and

other available information; 3) development of model-independent control schemes.

Nonlinear map measurements are feasible, especially with the help of MIA, and

can yield valuable local and global nonlinearity information for built machines. Since

few other options are available to measure nonlinearity (except for tune-based global

nonlinearity measurements such as the tune-shift-with-amplitude measurements and

the “frequency-map” measurements, which offer few clues on the sources of non-

linearities), nonlinear Taylor map measurements should be explored. Special high

resolution phase-space measurement systems (basically several high resolution BPMs

and a couple of strong kickers) can be built and will considerably improve the quality

of nonlinear map measurements. For high-cost, giant machines, such specially built

monitoring system could be a wise investment since it can significantly reduce the

amount of time to commission and maintain a machine.

1As the acronym MIA usually means–Missing In Action :-(



Appendix A

Least-squares methods

Incorporating the creativity of three great mathematicians/physicists (C.F. Gauss,1

A.M. Legendre and P.S. Laplace), least-squares methods are now widely used in many

branches of sciences. Although the simplest least-squares fitting case is well known,

the general methods may not be, and its statistical implications and subtlety could be

a pitfall for careless users. This appendix provides a brief review of the least-squares

methods, which have been frequently used in this dissertation. Reference [59] is one

of the nice books on this topic.

A.1 Simple least-squares

The simplest least-squares fitting case is to fit a straight line y = β0 + β1x through

a given set of points { (xi, yi) |i = 1, · · · , n} so that the square-sum of the deviations

between each yi and the line is minimized, i.e.

n∑
i=1

[yi − (β̂0 + β̂1xi)]
2 = ‖∆y‖2

2 = min. (A.1)

where β̂ means an estimate of the parameter β. The solution is easy. Requiring both

∂β̂0
(· · · ) = 0 and ∂β̂1

(· · · ) = 0 generates two equations in two unknowns called the

1Here is an anecdote I felt exciting. By inventing the least-squares methods, Gauss magically
found the lost star that astronomers were hunting for.
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normal equations:

n β̂0 + (
∑

xi)β̂1 =
∑

yi

(
∑

xi)β̂0 + (
∑

x2
i )β̂1 =

∑
xiyi (A.2)

whose solution is given by

β̂1 =

∑
(xi − x̄)(yi − ȳ)∑

(xi − x̄)2
and β̂0 = ȳ − β̂1x̄ (A.3)

where x̄ and ȳ represent average values.

This simple case illustrates the basic technique of least-squares fitting. The essence

of the least-squares requirement in Eq. (A.1) is rooted in statistics. The assumption

is that yi is a measurement of y(xi) with random error εi, i.e. yi − (β0 + β1xi) = εi.

Usually errors are independent, normally distributed with constant variance. Thus

the possibility of having the data pair (xi, yi) is 1√
2πσi

e−ε
2
i /(2σ

2
i ) and the joint possibility

of having the given data set is

n∏
i=1

1√
2πσi

e
− ε2i

2σ2
i = (

1√
2πσ

)ne−
1

2σ2

∑n
i=1 ε

2
i = (

1√
2πσ

)ne−
1

2σ2

∑n
i=1[yi−(β0+β1xi)]

2

(A.4)

Therefore, the possibility of having the particular given data set is maximized by

minimizing the square-sum in the exponential, i.e. the least-squares estimates coincide

with maximum likelihood estimates. However, the normality of errors is not necessary

for the least-squares estimators to have the smallest variance among all linear unbiased

estimators. There are many interesting issues I can not touch in such an appendix.

Note that the roles of x and y are not quite the same in the above fitting problem.

x is considered the independent (control) variable and y the dependent variable.

Usually the independent variables are assumed error-free. The attempt to discern

the relationship between a dependent variable and one or more independent variables

is named regression analysis.2 When the dependency is linear, it is called linear

2Regression analysis can be traced to Sir Francis Galton (1822–1911) who observed that children’s
heights tended to “revert” to the average height of the population rather than diverting from it.
That is, the future generations of off-spring who are taller than average are not progressively taller
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regression.

In Eq. (A.4), the εi’s are assumed to be independent and have the same variance

σ2. Least-squares problems satisfying these properties are termed simple least-

squares. In Section A.4 I will describe how to handle more general cases where the

variances are not the same and even correlations among the errors may exist.

A.2 Multiple linear regression

The above one independent variable case can be straightforwardly generalized to ac-

commodate multiple independent variables. The general statistical model of multiple

linear regression can be expressed as

Y = Xβ + ε (A.5)

or more explicitly



Y1

Y2

...

Yn


 =




1 X11 X12 · · · X1m

1 X21 X22 · · · X2m

...
...

...
...

...

1 Xn1 Xn2 · · · Xnm






β0

β2

...

βm


+



ε1

ε2
...

εn


 (A.6)

where Y and ε are random vectors that consist of random variables. The matrix X

is considered to be a matrix of known constants, which are the observations on the

independent variables. The β vector consists of parameters to be estimated.

The normal equation is given by

XTXβ̂ = XTY (A.7)

where β̂ is the least-squares estimate of the parameter β. If XTX has an inverse, the

than their respective parents, and parents who are shorter than average do not beget successively
smaller children.[62] For another account, see Ref. [19].
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normal equations have an unique solution given by

β̂ =
(
XTX

)−1
XTY. (A.8)

In matrix notation, the least-squares solution can be expressed by such a simple form!

which is easy and worth to remember. The matrix
(
XTX

)−1
XT is called pseudo-

inverse of the rectangular matrix X, and is often denoted as A+. Apparently the

purpose of multiplying XT is to make a square matrix out of the rectangular matrix

X so that it can be inversed. However, as in the case of one independent variable,

the least-squares requirement

∑
ε2i = εT ε = (Y −Xβ)T (Y −Xβ) = min (A.9)

is the statistical reason behind the above normal equation.

A.3 Error estimate, degeneracy, and application

of SVD

The major statistical properties of the least-squares solution β̂ are its mean and

variance. If the linear model is correct, the mean value is equal to the real parameter

β, i.e. the least-squares estimator is an unbiased estimator. The variance of β̂ reflects

the error bar of the least-squares estimate, which can be computed via

Var(β̂) =
[
(XTX)−1XT

]
Var(Y )

[
(XTX)−1XT

]T
=

[
(XTX)−1XT

]
Var(ε)

[
(XTX)−1XT

]T
=

[
(XTX)−1XT

]
Iσ2

[
(XTX)−1XT

]T
=

(
XTX

)−1
σ2 (A.10)

The square roots of the diagonal terms of Var(β̂) give the error bars for each estimated

parameter. Note that it is valid only when the linear model is correct.

We see that the accuracy of the estimated parameters are determined by the
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inversion of XTX. When there is near degeneracy in X (i.e. some independent

variables are almost linearly dependent of each others),
(
XTX

)−1
could be very large

and even close to singular. In such cases, the estimated parameters may have huge

error bars and thus are not reliable anymore. It may be necessary to remove those

degenerated variables in order to make each estimated parameter sufficiently accurate.

This is particularly important when the results are used in feedback controls.

Singular value decomposition (SVD) provides a general way to solve the least-

squares problem (including the above rank-deficient case). Let the SVD of X =

USV T =
∑

i σiuiv
T
i , then

‖Y −Xβ‖2
2 = ‖UTY − (UTXV )(V T β̂)‖2

2 = ‖S(V T β̂) − UTY ‖2
2

=
r∑
i=1

(σiαi − uTi Y )2 +
n∑
i=r

(uTi Y )2 (A.11)

where r = rank(X) and the column vector α = V T β̂. In the first step, the orthog-

onality of U and V has been used. Clearly, αi = uTi Y/σi for i = 1, · · · , r gives the

least-squares solution. Furthermore, if we set αi = 0 for i = r + 1, · · · ,m, then the

solution β̂ = V α = X+Y clearly has minimal 2-norm ‖β̂‖2. Therefore the general

pseudo-inverse can be written as

X+ =
∑
i

1

σi
viu

T
i = V diag

(
1

σ1

, · · · , 1

σr
, 0, · · · , 0

)
UT . (A.12)

If X is full-rank, then X+ =
(
XTX

)−1
XT . Otherwise, removing the close-to-zero

singular values could make the pseudo-inverse well behaved and yields more reliable

least-squares solution β̂ = X+Y . This is the most commonly used feature of SVD in

accelerator community before MIA were developed.

The SVD basically generates a set of orthogonal variables from the original in-

dependent ones and the corresponding singular values reflect the significance of each

orthogonal variable. By setting the insignificant singular values to zeros, the degen-

erated degrees of freedom are effectively removed.

Note the other very important feature of the least-squares solution β̂ = X+Y
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given by Eq. (A.12)—it has the smallest 2-norm of all minimizers that give the least

squares. (When X is rank-deficient, there are infinite number of solutions to the least-

squares requirement.) This feature has been widely used to reduce the rms corrector

strengths for orbit corrections.

A.4 Generalized least-squares

In the simple least-squares method discussed above, the random errors associated

with each measurement of the dependent variable are assumed to be independent

and have the same variance, i.e. Var(ε) = σ2 I. However, many applications do not

satisfy this condition. For example, each BPM may have different resolution, thus

Var(ε) is diagonal of unequal variances. In some cases, noise from different BPMs may

even be correlated, which results in a general covariance matrix Var(ε) = σ2V that

is symmetric positive definite but have non-zero off-diagonal entries. Convention

labels the first case weighted least squares and the second, more general case

generalized least squares.

The idea behind both is the same: transform the general least-squares problem

into a simple least-squares problem. To accomplish this, the covariance matrix is

decomposed as

V ≡ 1

σ2
Var(ε) = W W T (A.13)

which is always possible for a symmetric positive definite matrix. For example

Cholesky decomposition can be used, which yields a unique upper-triangular W .

Since V is positive definite, W is nonsingular. Pre-multiplying the general least-

squares model by W−1 gives

Ỹ = X̃β + ε̃ (A.14)

where Ỹ = W−1Y , X̃ = W−1X, and ε̃ = W−1ε. With this transformation,

Var(ε̃) = W−1V (W−1)Tσ2 = σ2 I. (A.15)

Therefore, the simple least-squares method can be applied to Eq.(A.14) to obtain an
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estimate β̂ as

β̂ = (X̃T X̃)−1(X̃)T Ỹ = (XTV −1X)−1XTV −1Y (A.16)

Note that the result does not depends on W , which may not be unique. The variance

of the estimate β̂ is given by

Var(β̂) = (X̃T X̃)−1σ2 = (XV −1X)−1σ2 (A.17)

Note that this solution minimized Var(ε̃) = 〈εTV −1ε〉 instead of 〈εT ε〉.
Thanks to the matrix notation, which provides a concise expression for the general

multiple regression problems, without it, even the simplest least-squares problem

appears complicated.



Appendix B

SingularValue Decomposition(SVD)

A major computation method used in this dissertation is the singular value decom-

position of a matrix. It is extremely useful in matrix theory from both theoretical

and computational point of views. As a matrix analysis method, it clearly reveals

the structure of a matrix and the various linear spaces associated with the matrix.

This appendix will briefly review SVD, mainly for the purpose of understanding this

powerful tool, although some computational aspects are discussed. Section B.1 sum-

marizes the definition and major properties of SVD. Section B.2 describes a method

to compute SVD by solving the eigenvalue problem of a symmetric matrix. The rest

sections describe basic orthogonal transformations, via which various useful matrix

decompositions, especially the SVD, can be constructed. The important statistical

aspects of SVD are discussed in Section 3.3. Most of the materials in this appendix

come from the reference [39].

B.1 Definition, existence, and properties of SVD

IfAm×n is a real matrix, then there exist real orthogonal matrices Um×m = [u1, · · · , um]

and Vn×n = [v1, · · · , vn] such that UTAV = diag(σ1, · · · , σp) ≡ S ∈ Rm×n, or

A = USV T =
∑
i

σi ui v
T
i (B.1)
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where σ1 ≥ σ2 ≥ · · · ≥ σp ≥ 0 and p = min(m,n). This decomposition of a matrix A

is called Singular Value Decomposition (SVD) and the expansion is called SVD

expansion. The σ’s are called singular values and the u’s (v’s) are called left (right)

singular vectors. From orthogonality of u’s and v’s, it is easy to see that

Avi = σiui and ATui = σivi (i = 1, · · · , p). (B.2)

When m > n a trimmed down version is often used, where only the first n columns

of Um×m and the first n rows of Sm×n are kept, thus A = U1S1V
T , which is called the

thin SVD.

SVD is extremely useful because it reveals a great deal about the structure of

a matrix, especially the linear spaces associated with the matrix. There are two

important subspaces associated with a matrix Am×n. The range of A is defined by

ran(A) ≡ {y ∈ Rm|y = Ax, for some x ∈ Rn}, and the null space of A is defined

by null(A) ≡ {x ∈ Rn|Ax = 0}. If Am×n = [a1, · · · , an] is a column partitioning,

then ran(A) = span{a1, · · · , an} ≡ {∑n
j=1 βj aj|βj ∈ R}. The rank of a matrix A is

defined by rank(A) ≡ dim(ran(A)). Note that rank(A) = rank(AT ). Am×n is rank

deficient if rank(A) < min(m,n) and is full rank otherwise.

If the number of nonzero singular values is r, then

rank(A) = rank(AT ) = r (B.3)

ran(A) = span{u1, · · · , ur} (B.4)

ran(AT ) = span{v1, · · · , vr} (B.5)

null(A) = span{vr+1, · · · , vn} (B.6)

null(AT ) = span{ur+1, · · · , um} (B.7)

Thus the SVD reveals the dimension of the associated subspaces and the singular

vectors provide a set of orthogonal basis for those subspaces. By specifying the

threshold for a singular value to be nonzero, SVD provides a practical method to

numerically define a matrix rank.

The importance of SVD can also be appreciated from the orthogonal projection
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point of view. Let S ⊆ Rn be a subspace. P ∈ Rn×n is an orthogonal projection

onto S if ran(P ) = S, P 2 = P , and P T = P . The usefulness of orthogonal projection

P is that if x ∈ Rn, then Px ∈ S and (I − P )x ∈ S⊥. From SVD result A = USV T ,

we have the partitionings U = [Ur, Ũr] and V = [Vr, Ṽr], the following important

orthogonal projections can be constructed,

VrV
T
r = projection on to null(A)⊥ = ran(AT ) (B.8)

ṼrṼ
T
r = projection on to null(A) (B.9)

UrU
T
r = projection on to ran(A) (B.10)

ŨrŨ
T
r = projection on to ran(A)⊥ = null(AT ) (B.11)

The singular values have close connections to various matrix norms, especially the

2-norm ‖A‖2 and the Frobenius norm ‖A‖F .

‖A‖2 ≡ max
‖x‖2=1

‖Ax‖2 = σ1 (the max. singular value) (B.12)

‖A‖2
F ≡

m∑
i=1

n∑
j=1

|aij|2 =

p∑
i=1

σ2
i (B.13)

min
x 6=0

‖Ax‖2

‖x‖2

= σn (m ≥ n). (B.14)

where the vector 2-norm is defined by ‖x‖2 =
√
xTx =

√∑
i=1 x

2
i .

From the matrix approximation point of view [59], the SVD expansion in Eq.(B.1)

expresses a matrix A as a sum of p rank-1 matrices. The first of these matrices is

the “best” rank-1 approximation to A, the sum of the first two matrices is the “best”

rank-2 approximation of A, and so forth. These are “best” approximations in the

least-squares sense; that is, no other matrix of the same rank will give a better

agreement with the original matrix A as measured by the sum of squared differences

between the corresponding elements of A and the approximating matrix [43]. The

goodness of fit of the approximation in each case is given by the ratio of the sum of the

eigenvalues used in the approximation to the sum of all eigenvalues. This property

can be understood from Eq.(B.13).
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The geometrical meaning of SVD is as follows: consider a unit hypersphere defined

by {x |x ∈ Rn, ‖x‖2 = 1}, the matrix Am×n specifies a linear transformation that

transform the hypersphere into a hyperellipsoid defined by {Ax |x∈ Rn, ‖x‖2 = 1}.
The singular values give the lengths of the semi-axes and the v-vectors give the

directions of the semi-axes.

The statistical meaning of SVD is that it accomplishes the principal components

analysis of a data matrix. See Section 3.3 for detail descriptions.

The applications of SVD in the least-squares problem and matrix pseudo-inverse

problem are discussed in the Appendix A.3. This probably is the most familiar

encounter with SVD in the accelerator physics community.

B.2 Computing SVD decomposition of a matrix

There are many algorithms that can accomplish the SVD of a matrix with different

efficiency and accuracy. In this section, I will outline one SVD algorithm in order to

illustrate important relations involved and to understand such decomposition better.

Numerical efficiency and accuracy are not a concern here (in fact, the algorithm

described here is among the worst in these regard).

Given a matrix A ∈ Rm×n with m ≥ n, SVD gives A = USV T where matrices

U and V are orthogonal and matrix S is diagonal with positive elements decreasing

along the diagonal. It is easy to see that

(ATA)V = (V SUT )(USV T )V = V S2 (B.15)

So the column vectors of V are eigenvectors of ATA with eigenvalues given by the

corresponding diagonal terms in S2. Since ATA is symmetric and semi-positive defi-

nite, its eigenvalues and eigenvectors are unique (eigenvectors up to a scaling factor)

unless there are degeneracy.

Equation(B.15) suggests us to form the matrix ATA and compute its eigenvalues

and eigenvectors. Then take the positive roots of all eigenvalues and order them in

descending order to form the diagonal matrix S. Meanwhile, use the corresponding
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eigenvectors as the column vectors to form the V matrix. Having found S and V ,

the matrix U can be computed from U = AV S−1, whose orthogonality follows from

Equation(B.15) and the orthogonality of V . Note that the result is a “thin” SVD of

the matrix A. The following sections discuss basic orthogonal transformations and

better ways to compute SVD of a matrix. Skipping these sections will not affect the

understanding of this dissertation.

B.3 Basic orthogonal transformations

Since orthogonal transformations conserve vector 2-norm and matrix 2-norm (as well

as Frobenius norm of a matrix), they have an important role to play in least-squares

fitting and eigenvalue computations. Except the basic permutation matrices which

will be reviewed first, there are two more elementary orthogonal transformations that

are often used as building blocks for more complicated orthogonal transformations:

Householder reflections and Givens rotations. They are generalizations of our every-

day concepts of reflection and rotation (in Euclidean space).

Permutation matrix Π is just the identity matrix with its rows re-ordered.

It represents operation that transforms a matrix A by permuting its rows (ΠA) or

columns (AΠ). For example, if

Π =




0 0 1 0

0 1 0 0

1 0 0 0

0 0 0 1


 ,

then ΠA will switch the 1st and 3rd rows of A and AΠ will permute the 1st and

3rd columns of A. Obviously, permutation matrices are orthogonal and a product of

permutation matrices is a permutation matrix.

Householder reflection is specified by the matrix

H = I − 2

vTv
vvT (B.16)



APPENDIX B. SINGULARVALUE DECOMPOSITION (SVD) 151

where v is a nonzero column vector and I is identity matrix of proper dimension. It

is clear that H is symmetric and orthogonal. H can be viewed geometrically as a

reflection in the subspace that orthogonal to a vector v (in the case of mirror reflection

in 3D, v is the normal vector of the mirror and the orthogonal subspace is the 2D

mirror surface).

For any nonzero vector x, one can generate a Householder matrix to zero all

components of x except the first one, which equals to the length of the vector with

an optional sign. Mathematically speaking, Hx = ∓‖x‖2 e1 where H is generated by

the Householder vector v = x±‖x‖2 e1 and e1 = [1 0 · · · 0]T . Geometrically speaking,

this property means that given a vector in certain orthogonal basis (v specifies its

components), one can transform to another set of orthogonal basis (via orthogonal

transformation H) that has the first base vector along the given vector in either

direction (the optional sign, the length of the vector remains the same because the

transformation H is orthogonal). This property and the simple determination of

the Householder vector make the Householder reflection very useful. It was used by

A. S. Householder (1958) in discussing certain eigenvalue problems.

Givens rotation (Givens 1954) is specified by the matrix

G(i, k, θ) =




1 · · · 0 · · · 0 · · · 0
...

. . .
...

...
...

0 · · · c · · · s · · · 0
...

...
. . .

...
...

0 · · · −s · · · c · · · 0
...

...
...

. . .
...

0 · · · 0 · · · 0 · · · 1




i

k

(B.17)

i k

where c = cos θ and s = sin θ. Clearly G is orthogonal. The geometrical meaning

is obvious also: G generates a rotation of angle θ in the plane given by the i-th and

k-th base vectors.
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Householder routine : H = H5H4 · · ·H1 , Givens routine : G = G15G14 · · ·G1


∗ ∗ ∗ ∗ ∗
1 ∗ ∗ ∗ ∗
1 2 ∗ ∗̄ ∗̄
1 2 3 ∗̄ ∗̄
1 2 3 4̄ ∗̄
1 2 3 4̄ 5̄







∗ ∗ ∗ ∗ ∗
5 ∗ ∗ ∗ ∗
4 9 ∗ ∗̄ ∗̄
3 8 12 ∗̄ ∗̄
2 7 11 14 ∗
1 6 10 13 15




Figure B.1: Illustration of QR factorization processes via a series of Householder
transformations or Givens rotations. The numbers indicate at which step that element
is zeroed.

The usefulness of Householder reflection and Givens rotation in matrix computa-

tions is that they can transform orthogonally a matrix into simpler form by zeroing

certain elements. Householder reflection is used to zero a block of elements in a col-

umn vector v, while Givens rotation can be used to zero one element of a vector v.

Figure B.1 illustrates how Householder reflections and Givens rotations can be used

to transform a matrix A6×5 into an upper triangular form. The numbers in the matrix

indicate at which step that element is zeroed. For example, H3 is obtained by putting

the 4× 4 Householder matrix H̃3 for the underlined elements into the lower diagonal

block of a 6 × 6 identity matrix, i.e. H3 = diag(I2, H̃3); the other affected elements

are marked with a .̄ On the other hand, G12 = G(3, 4,− arctan (12/∗)).
We see that a series of orthogonal transformations can bring a matrix A into

an upper triangular form R (which equals HA in Householder routine and GA in

Givens routine. HA and GA may or may not be equal but both are upper triangular

matrices). This leads to an important matrix factorization called QR factorization.

B.4 QR factorization of a matrix

For any matrix Am×n, there exists orthogonal matrix Q such that

A = Qm×mRm×n (B.18)
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where R is upper triangular matrix.

If m ≥ n and Am×n has full column rank (i.e. all columns of A are linearly in-

dependent and rank(A) = n), QR factorization has the property that the first n

columns of Q form an orthonormal basis for ran(A). In fact, a stronger statement

can be made:

span{a1, · · · , ak} = span{q1, · · · , qk}, k = 1, · · · , n (B.19)

where ak and qk are column vectors of A and Q matrices. Q and R matrices can even

be trimmed down (keep only first n columns of Q and first n rows of R) to get a thin

QR factorization

A = Qm×nRn×n ≡ Q1R1. (B.20)

This factorization is unique when R1 uses positive diagonal entries. Moreover, RT
1 is

the lower triangular Cholesky factor of the symmetric matrix ATA.

If m ≥ n and Am×n is rank deficient (i.e. some columns of A are a linear combi-

nation of the other columns), the above properties may not hold anymore. Especially

Q does not necessarily produce an orthonormal basis for ran(A). A simple cure of this

is called QR factorization with Column Pivoting. The basic idea is to group

dependent and independent columns into separate blocks via column permutations.

The Householder QR factorization can be modified to include column pivoting: before

each step in Householder QR factorization, the first column with the largest 2-norm

(of the columns in the submatrix being considered) should be switched to the lead

position. QR factorization with column pivoting yields

QTAΠ =

[
R11 R12

0(m−r)×r 0(m−r)×(n−r)

]
m×n

(B.21)

where r = rank(A), Q is orthogonal, R11 is upper triangular and non-singular, and Π

is a permutation. The first r columns of Q form orthonormal basis for ran(A).
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B.5 Symmetric Schur Decomposition

For any real symmetric matrix A of order n, there exists a real orthogonal Q such

that

QTAQ = Λ = diag(λ1, · · · , λn). (B.22)

Moreover, the k-th column of Q is the eigenvector of A that has eigenvalue λk.

Eq.(B.22) is called symmetric Schur decomposition.

The eigenvalues of a symmetric matrix have the “minimax” property that

λk(A) = max
dim(S)=k

min
06=y∈S

yTAy

yTy
, (k = 1, · · · , n) (B.23)

This is referred to as Courant-Fischer Minimax Theorem.
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